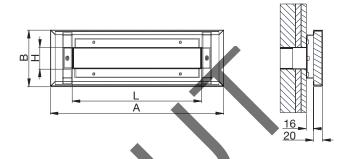
Pressure control valve

Description

OLR is a rectangular pressure control valve for installation directly onto a wall. OLR consists of two sound-attenuating baffles, which are mounted either side of the wall and connected by means of the accompanying perforated walk sleeve, which ensures excellent noise reduction.

- High capacity
- Sound-attenuating baffles
- Can be installed in wall thicknesses from 90 - 170 mm


Maintenance

Front plate can be removed to enable cleaning of internal parts. The visible parts of the diffuser can be wiped with a damp cloth

Order code

Product	OLR	aaa	Α
Туре			
Size			
Version			

Dimensions

Size	A	В	L	Н
Size	mm	mm	mm	mm
400	400	130	300	50
600	600	130	500	50
800	800	130	700	50
1000	1000	130	900	50

Hole dimension = L + 5 mm x H + 5 mm.

Materials and finish

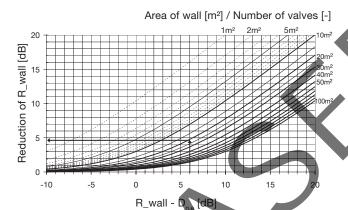
Installation bracket: Galvanised steel Front plate: Galvanised steel Standard finish: Powder-coated

Standard colour: RAL 9010 or 9003, Gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

Pressure control valve

OLR


Technical data

Sample calculation

When dimensioning an overflow diffuser, calculate the decrease in the wall's noise-reducing properties. For these calculations, the area of the wall and sound reduction figure R must be known. This is adjusted in relation to the diffuser's $D_{\rm n,e}$ value. $D_{\rm n,e}$ is the diffuser's R value given at a transmission area of 10 $\rm m^2$, as specified in ISO 140-10. The $D_{\rm n,e}$ value can be converted into the R value for other transmission areas using the table below.

Area [m ²]	10	2	1
Correction [dB]	0	-7	-10

The diagram below indicates the decrease in the wall's reduction figure, based on the diffuser, in a given octave band:

As a rough estimate the calculation can be performed directly using the wall's $\mathbf{R}_{\rm w}$ value.

Example:

R_w (wall) D_{n,e,w} (diffuser) Area of wall 50 dB 44 dB R_w - $D_{n,e,w}$ = 6 dB 20 m²

Number of diffusers 1p

1pcs. 20 m²/1pcs. = 20 m²

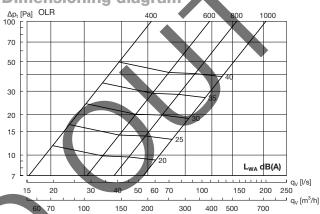
Indicated reduction of R_w (wall): 5

 R_w value for wall with diffuser: $\sim 50-5 = 45 \text{ dB}$

The calculation can also be performed using the following formula:

$$R_{res} = 10 \cdot Log \quad \frac{S_{wall}}{(10m^2 \cdot 10^{-0.1 \cdot D_{n,e}}) + (S_{wall} \cdot 10^{-0.1 \cdot R_{wall}})}$$

where:


- $\ensuremath{\text{R}_{\text{res}}}$ is the resulting reduction figure for wall and diffuser.
- S is wall area.
- $D_{n,e}$ is the diffuser's $D_{n,e}$ value.
- R_{wall} is the wall's R value without diffuser.

Technical data

Capacity

Volume flow q_v [I/s] and [m³/h], total pressure drop Δp_t [Pa] and sound effect level L_{WA} [dB(A)] are specified for a diffuser on either side of the wall.

Dimensioning diagram

Element-normalised reduction figure D_{n.e}

Table 1: Cavity wall with 120 mm insulation.

		(Centre fre	entre frequency Hz		
Size	125	250	500	1K	2K	$D_{n,e,w}$
400	*31	37	41	46	55	46
600	*29	35	38	43	52	43
800	*28	34	37	42	51	42
1000	*26	33	36	41	50	41

Table 2: Cavity wall with 35-70 mm insulation.

C:	Centre frequency Hz					
Size	125	250	500	1K	2K	$D_{n,e,w}$
400	*31	37	39	42	52	44
600	*29	35	37	40	49	42
800	*28	34	35	39	48	40
1000	*26	33	34	38	47	39

Table 3: Positioning over a frame in a cavity wall with 70 mm insulation.

0:	Centre frequency Hz					
Size	125	250	500	1K	2K	$\mathbf{D}_{n,e,w}$
400	*31	37	36	41	52	42
600	*29	35	33	39	49	39
800	*28	34	32	38	48	38
1000	*26	33	31	37	47	37

Table 4: Solid wall without insulation.

0:	Centre frequency Hz					
Size	125	250	500	1K	2K	$D_{n,e,w}$
400	*31	37	32	37	45	38
600	*29	35	30	35	43	36
800	*28	34	28	33	42	34
1000	*26	33	27	32	41	33

* minimum values

