

Lindab **Dampers**

Mounting instructions

Product overview

Standard dampers

		To regulate	To shut-off
manual		DRU DIRU	DTU DSU DTMU
for motor	electric or pneumatic	DRH1U	DTH1U DTH2U DTHU
for motor	electric	DTBVU DRBVU	DSUSN DTBU DTBCU DTFU DTBLU
with motor	pneumatic		DTPU

Cleaning dampers

	To regulate	To shut-off
manual	PSDRU TDRU	

Product overview

Alternating dampers

	To regulate	To shut-off
manual		TASU TATU
with motor electric		TATBU

Constant- and variable flow units (automatic dampers)

	To regulate	To shut-off
manual	DAU VRL1	
with motor electric	DAVU DA2EU	

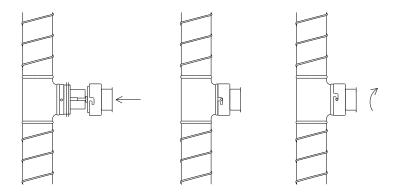
Air stream operated damper

	To regulate	To shut-off
manual	RSKA	

Product overview

DRBVU, DRH1U, DRU, DSU, DTU, DTHU, DTH1U, DTH2U, DTBU, DTBVU, DTBCU, DTFU, DTBLU, DSUSN, DTPU, PSDRU, TDRU, TASU, TATU, TATBU

Assembly


In order to fulfil the requirements for air-tightness class D, the dampers must be installed as per 'Assembly Instruction Lindab Safe'.

For certain manual dampers, there is the option of adding a motor later on.

The dampers allow 50 mm duct insulation without the knob being hidden. For 100 mm duct insulation, there is an insulation cup, IK, for DRU, DSU, DTU, TASU and TATU.

PSDRU and TDRU

The dampers are installed by inserting the two guide pins on the T-piece or saddle into the L-shaped slots on the dampers. The dampers are then locked by turning them slightly clockwise.

Balancing

On DRU, PSDRU and TDRU the damper blade is stepless adjustable through 0–90° (0°=fully open, 90°=completely closed) using the knob in the cup. Locking is performed using screws for Pozidrive (PZD2) and the damper angle can be read off a stamped grade on the edge of the cup. Other types of damper normally only work in the fully open or completely closed positions.

On motorized shut-off dampers and dampers adapted for a motor, the shaft end for the motor is equipped with a notch showing the position of the damper blade.

Manual dampers \emptyset <355 can be supplemented with a sturdy handle to facilitate adjustment. Larger dimensions are equipped with a handle as standard.

Maintenance

Dampers and motors normally don't require any maintenance.

CE marking

Our dampers with electrical actuator are regarded as a component in the duct system and does not need to be CE marked separately.

Their electrical actuators on the other hand are part of the electrical system and are CE marked. Declaration of compliance with the essential requirements can be found at www.belimo.ch.

Power supply..... Power consumption For wire sizing Connection..... Operating angle..... Torque at rated voltage..... Direction of rotation..... Position indication..... Running time for 95° Sound power level..... Protection class..... Protection type Ambient temperature range

Ambient moisture

Power consumption

For wire sizing

Protection type

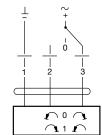
Ambient temperature range

Ambient moisture

CM 230 / CM 230 F CM 24 / CM 24 F AC 19,2-28,8 V, 50/60 Hz AC 65-265 V, 50/60 Hz DC 19,2-28,8 V

0.5 W 1.5 W 1 VA 3 VA

Cable 1 m, 3×0,75 mm2 Cable 1 m, 3×0,75 mm2 Max. 95°, adjustable 0-100% Continously rotating


Min. 2 Nm Min. 2 Nm -L or -R -L or -R

Mechanical, removable Mechanical, removable 75 s 75 s

Max. 35 dB (A) Max. 35 dB (A) III Safety extra-low voltage II Safety insulated

IP 54 IP 54 -30 to +50°C -30 to +50°C 95 % RF 95 % RF

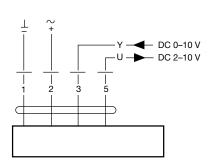
CM 24 SR

Power supply..... AC 24 V, 50/60 Hz DC 24 V

0.5 W 2 VA

Connection..... Cable 1 m, 4×0,75 mm²

Min. 2 Nm Torque at rated voltage.....


Direction of rotation..... Switch selectable 0 or 1

Running time for 95° 75 s

Max. 35 dB (A) Sound power level.....

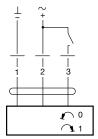
III Safety extra-low voltage Protection class.....

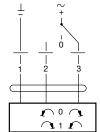
Protection type IP 54 -30 to +50°C Ambient temperature range Ambient moisture 95 % RH

LM 24 A-F LM 230 A-F AC 65-265 V, 50/60 Hz AC 19,2-28,8 V, 50/60 Hz Power supply.....

DC 19,2-28,8 V 1 W 1,5 W Power consumption

For wire sizing 2 VA 4 VA


Cable 1 m, 3×0,75 mm² Cable 1 m, 3×0,75 mm² Connection


Operating angle..... Max. 95°, adjustable 0-100% Max. 95°, adjustable 0-100% Torque at rated voltage..... Min. 5 Nm Min. 5 Nm

Direction of rotation..... Switch selectable Switch selectable 0 🖍 or 1 🕦 0 \(\cdot\) or 1 \(\cdot\) Position indication..... Mechanical Mechanical Running time for 95° 150 sMax. 35 dB (A) Sound power level..... Max. 35 dB (A) Protection class.....

III Safety extra-low voltage II Safety insulated IP 54 IP 54

-30 to +50°C -30 to +50°C 95 % RH 95 % RH

Protection type.....

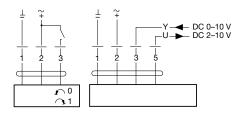
Ambient temperature range

Ambient moisture

Power supply.....

Ambient moisture

Power supply.....


I MO 244 LMQ-SR 24A AC 19,2-28,8 V, 50/60 Hz AC 19,2-28,8 V, 50/60 Hz Power supply..... DC 21,6-28,8 V DC 21,6-28,8 V

Power consumption 13 W 12 W For wire sizing 23 VA 23 VA

Connection..... Cable 1 m, 3×0,75 mm² Cable 1 m, 4×0,75 mm² Operating angle..... Max. 95°, adjustable 0-100 % Max. 95°, adjustable 0-100 %

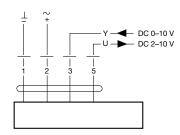
Torque at rated voltage..... Min. 4 Nm Min. 4 Nm Switch selectable Switch selectable Direction of rotation..... 0 **(** or 1 **(** 0 🖍 or 1 🕦 Mechanical Mechanical Position indication..... Running time for 90° 2.5 s2.5 sSound power level..... 52 dB (A) 52 dB (A) Protection class..... III Safety extra-low voltage II Safety insulated

IP 54 IP 54 -30 to +40°C -30 to +40°C 95 % RH 95 % RH

LM 24 A-SR

LM 230 A-SR AC 19,2-28,8 V, 50/60 Hz AC 230 V, 50/60 Hz

95 % RH


DC 19,2-28,8 V Power consumption 1,8 W 1 W 4 VA 2 VA

For wire sizing Cable 1 m, 4×0,75 mm² Cable 1 m, 2×0,75 mm² Connection Max. 95°, adjustable Max. 95°, adjustable Operating angle.....

Torque at rated voltage..... Min. 5 Nm Min. 5 Nm Direction of rotation..... Switch selectable Switch selectable 0 1 or 1 1 0 1 or 1 1 Position indication..... Mechanical Mechanical Running time for 95° 150 s 150 s

Sound power level..... 35 dB (A) 35 dB (A) III Safety extra-low voltage Protection class..... Ш IP 54 Protection type IP 54 -30 to +50°C -30 to +50°C Ambient temperature range

95 % RH

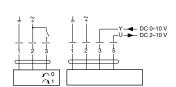
LM 24 A-SX

AC 19,2-28,8 V, 50/60 Hz

DC 21,6-28,8 V 2 W Power consumption For wire sizing 4 VA Cable 1 m, 4×0,75 mm2 Connection

Max. 95°, adjustable 0–100 %Operating angle.....

Min. 5 Nm Torque at nominal voltage


Direction of rotation..... Switch selectable 0/1

Switch selectable 0 \(\oldsymbol{\epsilon} \) or 1 \(\oldsymbol{\epsilon} \). Position at Y=0 V.....

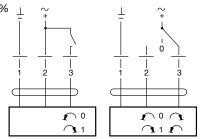
Position indication..... Mechanical Running time for 90° 150 s Sound power level..... 35 dB (A)

Protection class..... III Safety extra-low voltage

Protection type IP 54 -30 to +50 °C Ambient temperature range Ambient humidity 95 % RH

NM 230 A-F AC 19,2-28,8 V, 50/60 Hz AC 85-265 V, 50/60 Hz Power supply..... DC 19,2-28,8 V Power consumption 1.5 W 2.5 W

NM 24 A-F


For wire sizing 3.5 VA 6 VA Connection..... Cable 1 m, 3×0,75 mm2

Cable 1 m, 3×0,75 mm2 Max. 95°, adjustable 0-100 % Operating angle..... Max. 95°, adjustable 0-100%

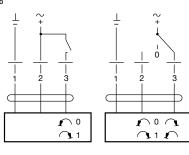
Torque at rated voltage..... Min. 10 Nm Min. 10 Nm Switch selectable Switch selectable Direction of rotation..... 0 **(** or 1 **(** 0 🖍 or 1 🕦 Mechanical Mechanical Position indication..... Running time for 95° 150 s150 s

Sound power level..... Max. 35 dB (A) Max. 35 dB (A) Protection class..... III Safety extra-low voltage II Safety insulated IP 54 IP 54

Protection type..... Ambient temperature range -30 to +50°C -30 to +50°C 95 % RH Ambient moisture 95 % RH

SM 24 A SM 230 A

Power supply..... AC 19,2-28,8 V, 50/60 Hz AC 85-265 V, 50/60 Hz DC 19,2-28,8 V


Power consumption 2,5 W 2 W For wire sizing 4 VA 6 VA

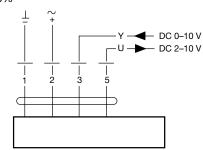
Cable 1 m, 3×0,75 mm2 Cable 1 m, 3×0,75 mm2 Connection Max. 95°, adjustable 0-100% Max. 95°, adjustable 0-100% Operating angle.....

Torque at rated voltage..... Min. 20 Nm Min. 20 Nm Direction of rotation..... Switch selectable Switch selectable 0 1 or 1 1 0 1 or 1 1 Position indication..... Mechanical Mechanical Running time for 95° 150 s150 s

Sound power level..... Max. 35 dB (A) Max. 35 dB (A) II Safety insulated Protection class..... III Safety extra-low voltage

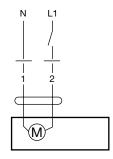
Protection type IP 54 IP 54 -30 to +50°C Ambient temperature range -30 to +50°C Ambient moisture 95 % RH 95 % RH

GM 24 A GM 230 A AC 19,2-28,8 V, 50/60 Hz AC 85-265 V, 50/60 Hz Power supply..... DC 19,2-28,8 V

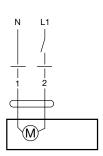

4.5 W 4.5 W Power consumption For wire sizing

Cable 1 m, 3×0,75 mm2 Cable 1 m, 3×0,75 mm2 Connection.....

Max. 95°, adjustable 0-100% Max. 95°, adjustable 0-100% Operating angle..... Min. 40 Nm Min. 40 Nm Torque at rated voltage.....


Switch selectable Direction of rotation..... Switch selectable $0 \, \text{for } 1 \, \text{O}$ 0 1 or 1 1 Position indication..... Mechanical Mechanical Running time for 95° 150 s150 s Max. 45 dB (A) Sound power level..... Max. 45 dB (A) III Safety extra-low voltage II Safety insulated Protection class.....

IP 54 IP 54 Protection type -30 to +50°C -30 to +50°C Ambient temperature range Ambient moisture 95 % RH 95 % RH



Power supply	TF 24 2AC 19,2–28,8 V, 50/60 Hz DC 21,6–28,8 V	TF 230 AC 85–265 V, 50/60 Hz
Power consumption		
- during opening	2,5 W 1.5 W	2,5 W 1.5 W
For wire sizing	5 VA	5 VA
Connection Operating angle, adjustable Torque at rated voltage	Cable 1 m, 2×0,75 mm ² Mech. limited to 95°	Cable 1 m, 2×0,75 mm ² Mech. limited to 95°
- motor - return spring Direction of rotation left-hand installation L/R	Min. 2 Nm Min. 2 Nm Optional through right or	Min. 2 Nm Min. 2 Nm Optional through right o left-hand installation L/F
Position indication	Mechanical	Mechanical
- motor - return spring Degree of protection Ambient temperature range	< 75 s (0–2 Nm) < 25 s IP 42 -30 to +50°C	< 75 s (0-2 Nm) < 25 s IP 42 -30 to +50°C

Power supply	LF 24 2AC 19,2–28,8 V, 50/60 Hz DC 21,6–28,8 V	LF 230 AC 198–264 V, 50/60 Hz
Power consumption - during opening - stand-by For wire sizing Connection Operating angle, adjustable Torque at rated voltage	5 W 2,5 W 7 VA Cable 1 m, 2×0,75 mm ² Mech. limited to 95°	5 W 3 W 7 VA Cable 1 m, 2×0,75 mm ² Mech. limited to 95°
- motor	Min. 4 Nm Min. 4 Nm Optional through right or left-hand installation L/R Mechanical	Min. 4 Nm Min. 4 Nm Optional through right or left-hand installation L/R Mechanical
motor return spring Sound power level	40-75 s (0-4 Nm) app. 20 s	40-75 s (0-4 Nm) app. 20 s
- motor - return spring Degree of protection Ambient temperature range	max 50 dB (A) app. 62 dB (A) IP 54 -30 to +50°C	max 50 dB (A) app. 62 dB (A) IP 54 -30 to +50°C

Running time

Torque at rated voltage

Running time

Sound power level

– motor

- return spring Degree of protection.....

Ambient temperature range

SFA (both 24 V and 230 V power supplay)

AC 19,2-28,8 V, 50/60 Hz Power supply..... DC 21,6-137,5 V Power consumption

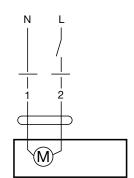
7 W - during operation

- stand-by 3,5 W For wire sizing 18 VA (I_{ma}x 20 A @ 5 ms) Connection..... Cable 1 m, 2×0,75 mm2 Operating angle, adjustable Mech. limited to 95° Torque at rated voltage

- motor Min. 20 Nm spring bias Min. 20 Nm

Direction of rotation..... Optional through right or left-hand installation L/R

Position indication..... Mechanical


– motor ≤ 75 s (0 ... 20 Nm)

≤ 20 s @ -20 ... 50°C / max. 60 s @ -30°C - return spring

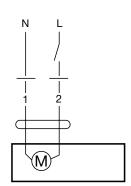
Sound power level - motor \leq 45 dB (A)

- return spring \leq 62 dB (A) Degree of protection..... IP 54

Ambient temperature range -30 to +50 °C Ambient temperature range -30 to +50 °C

	EF 24A	EF 230A
Power supply	AC 19,2-28,8 V, 50/60 Hz	AC 90-264 V, 50/60 Hz
	DC 21.6-28.8 V	

Power consumption 9.5 W 9 W - during operation - stand-by 4,5 W 4,5 W For wire sizing 16 VA 21 VA Cable 1 m, 2×0,75 mm2 Connection..... Operating angle, adjustable


Cable 1 m, 2×0,75 mm2 Mech. limited to 95° Mech. limited to 95°

– motor Min. 30 Nm Min. 30 Nm Min. 30 Nm Min. 30 Nm - spring bias Direction of rotation.....

Optional through right or Optional through right or left-hand installation L/R left-hand installation L/R Position indication..... Mechanical Mechanical

 \leq 75 s (0–30 Nm) ≤ 75 s (0–30 Nm) - motor - return spring ≤ 20 s ≤ 20 s

 \leq 55 dB (A) \leq 55 dB (A) ≤ 71dB (A) ≤ 71dB (A) IP 54 IP 54 -30 to +50 °C -30 to +50 °C

LKSR

Assembly

In order to fulfil the requirements for air-tightness class C, the damper must be installed as per 'Assembly Instruction Rectangular air duct systems'.

For the damper, there is the option of adding a motor later on.

The damper allows a 50 mm duct insulation without the knob being hidden. For 100 mm insulation, an insulation cup, IK, is available.

Balancing

On LKSR the damper blade is adjusted through $0-90^{\circ}$ (0° = fully open, 90° = completely closed) using the knob in the cup. Locking is performed using screws for Pozidrive (PZD2) and the damper angle can be read off a stamped grade on the edge of the cup.

Manual damper can be supplemented with a sturdy handle to facilitate adjustment.

Maintenance

The damper and motor normally don't require any maintenance.

Constant/variable flow dampers

DAU, DA2EU, DAVU

Assembly

In order to fulfil the requirements for air-tightness class D, the devices must be installed as per 'Assembly Instruction Lindab Safe'.

The devices must be installed with the air flow in the direction of the arrow.

The devices allow 50 mm duct insulation without the scale or any motor being hidden.

Pressure range

50-1000 Pa over the unit.

Interference sensitivity

In order to achieve stated precision for the set flow, a straight duct of at least 3xd before and 1.5xd after the devices is required. A assembly close to a source of interference (bend, saddle, etc.) reduces control accuracy and the flow can deviate from the set value.

Changes in direction

The units are independent of their direction of installation; you can deviate from the projected direction and install them in any direction you like without affecting accuracy.

Systematic error

Control accuracy

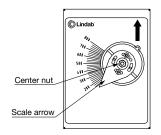
The devices are calibrated within their entire operating range at the factory. This means the devices keep the flow constant to within approx. ±5 to ±10 % of the set flow. Larger deviations occur at lower flows, especially with small sizes.

Maintenance

The devices normally don't require any maintenance, but should be protected from contaminated air wherever possible.

CE marking

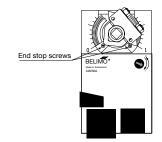
Our dampers with electrical actuator are regarded as a component in the duct system and does not need to be CE marked separately.


Their electrical actuators on the other hand are part of the electrical system and are CE marked. Declaration of compliance with the essential requirements can be found at www.belimo.ch .

Constant/variable flow dampers

DAU

The flow is adjusted by loosening the central nut and using the knob to turn the scale arrow so that it points to the desired flow on the scale. The nut is then locked.



DA2EU

Setting of flows

The two flows are set by moving the end stops. At delivery the stops are set at largest possible distance. If you want to limit the flow span proceed in the following way:

- 1. The one flow is set by turning the spindle so that the scale arrow points at the desired flow and thereafter move one of the end stops close up to the clamp's one heel and lock the stop there.
- The other flow is set by turning the spindle so that the scale arrow points at this flow and thereafter move the other end stop close up to the clamp's other heel and lock this stop there.

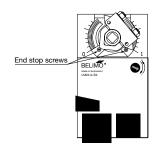
Choice of flows

The one flow is chosen by feeding an operating voltage. This voltage, 24 or 230 V, turns the motor to one of the stops.

The other flow is chosen by breaking the operating voltage. The motor then goes to the other stop.

Technical data for the motors

100111110ai data 101 ti10	11101010			
	LM 24 A	LM 230 A		
Power supply	AC 19,2-28,8 V, 50/60 Hz	AC 65-265 V, 50/60 Hz		
	DC 19,2-28,8 V			
Power consumption	1 W	1,5 W		
For wire sizing	2 VA	4 VA		
Connection	Cable 1 m, 3×0,75 mm2	Cable 1 m, 3×0,75 mm2		
Operating angle	Max. 95°, adjustable 0-100%	% Max. 95°, adjustable 0-100%)	
Torque at rated voltage	Min. 5 Nm	Min. 5 Nm		
Direction of rotation	Switch selectable	Switch selectable	<u> </u>	<u> </u>
	0 🖍 or 1 🔼	0 🖍 or 1 🕦	I	1
Position indication	Mechanical	Mechanical		1
Running time for 95°	150 s	150 s	1 1	
Sound power level	Max. 35 dB (A)	Max. 35 dB (A)		
Protection class	III Safety extra-low voltage	II Safety insulated		
Protection type	IP 54	IP 54		
Ambient temperature range	-30 to +50°C	-30 to +50°C		
Ambient moisture	95 % RH	95 % RH		$\overline{\mathbf{v}}_{0}$
			I (1 1	

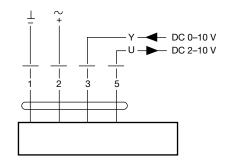

Constant/variable flow dampers

DAVU

Setting of flow limits

The two flow limits are set by moving the end stops. At delivery the stops are set at largest possible distance. If you want to limit the flow span proceed in the following way:

- 1. The one flow limit is set by turning the spindle so that the scale arrow points at the desired flow and thereafter move one of the end stops close up to the clamp's one heel and lock the stop there.
- 2. The other flow limit is set by turning the spindle so that the scale arrow points at this flow and thereafter move the other end stop close up to the clamp's other heel and lock this stop there.
- 3. The motor shall then be adapted so that the regulating span 2-10 V adapts to the thus set flow span. This is done by a push on the "gear disengagement" button. The motor then automatically performs a stroke between the flow limits.



Choice of flow

The flow is chosen by feeding a control signal. This signal, 2-10 V, sets the motor in a proportional position between the flow limits.

Technical data for the motor

Tooming and the time	
Power supply	LM 24 A-SX AC 19,2–28,8 V, 50/60 Hz DC 21.6–28.8 V
Power consumption	2 W 4 VA Cable 1 m, 4×0,75 mm² Max. 95°, adjustable 0–100 % Min. 5 Nm Switch selectable 0/1 Switch selectable 0 for 1 for 1 Mechanical 150 s 35 dB (A) III Safety extra-low voltage IP 54 -30 to +50 °C
Ambient humidity	95 % RH

Air stream operated dampers

CARU, CAR

Assembly

CARU

In order to fulfil the requirements of tightness class D the damper must be installed as per 'Assembly Instruction Lindab Safe'.

CAR

The damper is installed by simply placing it inside a duct.

Measurement

The dampers normally don't need any maintenance.

Flow meters

FMU

Assembly

In order to fulfil the requirements for air-tightness class D, the devices must be installed as per 'Assembly Instruction Lindab Safe'.

The devices allow 100 mm duct insulation without sticker or measuring points being hidden.

For optimum readability (regardless of the installation position), the plate with the sticker can be turned, folded up to prevent it disappearing in any insulation or to be easily removed and positioned separately from the device.

Measurement

By measuring the pressure difference Δp in Pa at the measuring points, you can achieve a flow q in I/s using the equation on the devices.

The specified flows only apply for air with a density of 1.2 kg/m3. For air of another density (pother) the flow (qother density) is achieved as per the formula:

$$q_{other_density} = q_{equation} \times \sqrt{\frac{1,2}{\rho_{other}}}$$

Dimension mm	k-factor
80-63	4,40
100-80	7,32
125-100	11,2
160-125	18,0
200-160	29,4
250-200	45,7
315–250	73,3
400–315	116
500-400	191
630-500	283

Systematic error

Straight stretches are required in order to achieve flows as per equations with specified accuracy. The systematic error m₂ is 5% and 10% below the minimum requirements for straight stretches as specified. For these minimum straight requirements - do not install measuring points in line with the nearest bend's inside radius.

Maintenance

The devices normally don't require any maintenance.

Cleaning

FMU does not limit cleaning opportunities.

DIRU

Assembly

Mount the dampers according to "Assembly Instructions Lindab Safe" to meet with the requirements for tightness class C.

Consider required straight distance after or before disturbance, as mentioned on the card attached to the measurement nozzles, to obtain accurate flow measurement. Dampers with dimension 400, 500 and 630 are provided with transport protections. Remove these before assembly.

The damper may not be loaded with weight from connected ducts, specially when assembled vertically.

Measuring

Measuring pressure Δp_{m}

The balancing graphs show the flow, q, as a function of the measured pressure, Δp_m , in the measure nozzles.

$$q=k \cdot \sqrt{\Delta p_m}$$

The formula is only accurate for air with the density 1,2 kg/m³. For air with other density, (ρ_{other}), the flow, (q_{other}), is given according to the formula.

$$q_{other} = q_{equation} \times \sqrt{\frac{1,2}{\rho_{other}}}$$

The balancing graphs should only be used to balance the system. They should not be used to calculate the pressure drop in the system, in those cases the dimensioning graphs should be used.

Measurement accuracy

Consider required straight distance after or before disturbance, as mentioned on the card attached to the measurement nozzles, to obtain accurate flow measurement.

Balancing

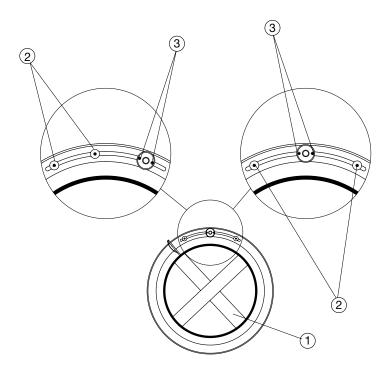
Connect the measuring hoses to the damper measuring nozzles.

Loosen the locking screws (3), which have Philips slot no.1. adjust the handle so that requisited pressure drop receives. Fasten the screws (3) and remount the tightness screws (2), so that the slot gets airtight.

For dimension 400,500 and 630 - remove the tightness screws (2). Then loosen the locking screws (3), which have Philips slot no. 2. Adjust the handle so that requisited pressure drop receives. Fasten the screws (3) and remount the tightness screws (2), so that the slot gets airtight.

Disconnect the hoses and plug the nozzles.

Maintenance


The product normally doesn't requires any maintenance.

Cleaning

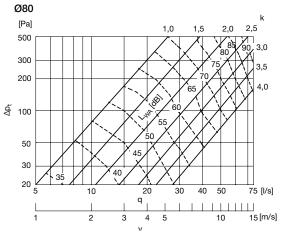
By fully open the damper, one get access to the duct. Do not forget to readjust the damper after cleaning.

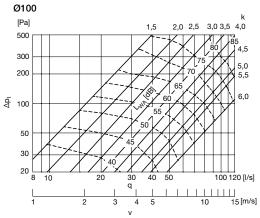
DIRU

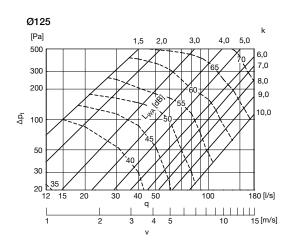
To set the air flow:

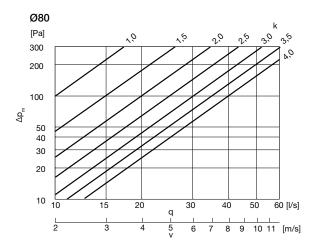
- 1. Determine the k factor on the scale on the damper, k.
- 2. Measure the pressure difference by connecting a measuring device to the damper's nozzles, Δp_m .
- 3. Calculate the flow by using the formula, q=k $\cdot \sqrt{\Delta p_{_{m}}}$.
- 4. Compare the calculated flow to the required.
- 5. Adjust the damper if necessary and repeat steps 1-4 until you get the required flow.

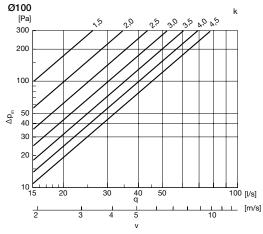
Don't forget to plug the nozzles after measuring.

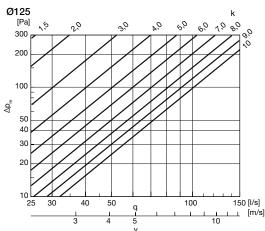

DIRU

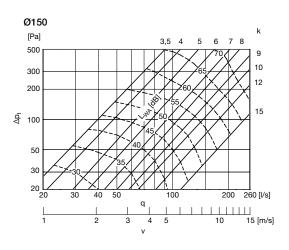

Pressure drop graphs with noise generation for dimensioning

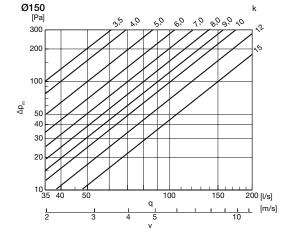

The dimensioning graphs show the pressure drop over the damper with flow meter, $\Delta p_t.$ They should be used to determine the pressure drop and to provide information about sound power levels at different settings.

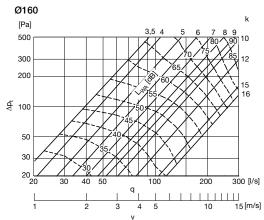

Flow graphs for balancing

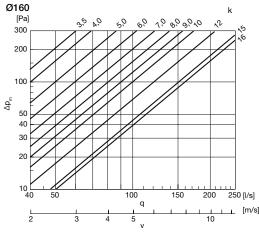

The balancing graphs show the flow as a function of the measured pressure, $\Delta p_\text{m}.$ These graphs should be used to balance the system.

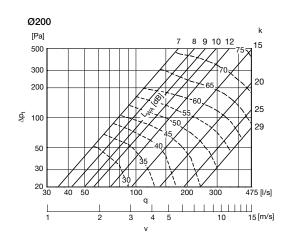


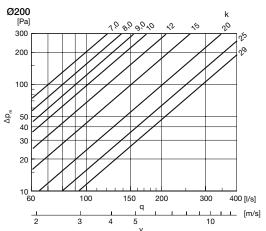


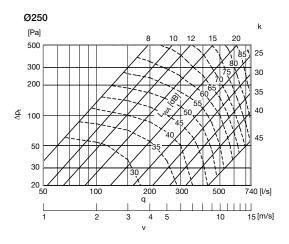


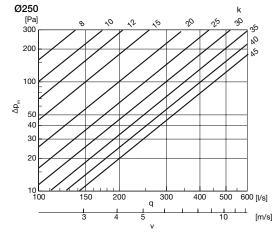

DIRU

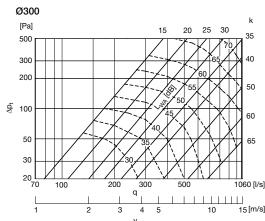

Pressure drop graphs with noise generation for dimensioning

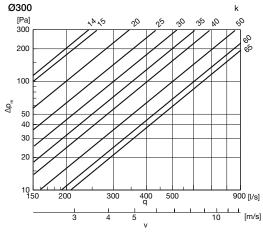

Flow graphs for balancing

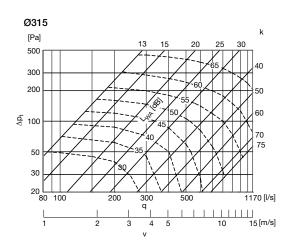


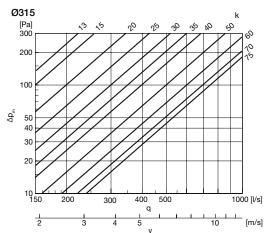


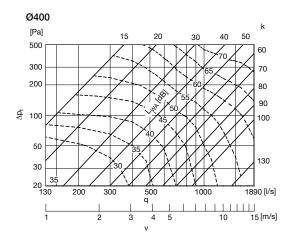


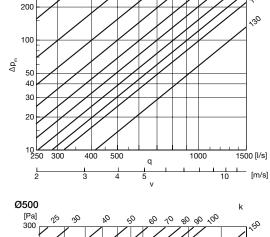

DIRU

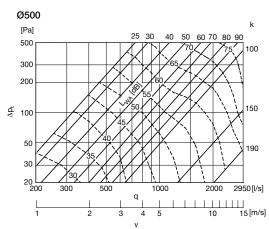

Pressure drop graphs with noise generation for dimensioning

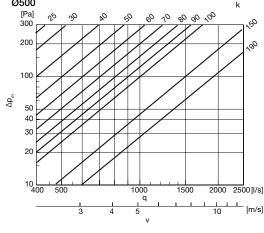

Flow graphs for balancing

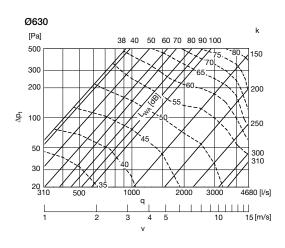


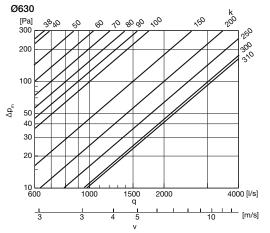

DIRU


Pressure drop graphs with noise generation for dimensioning


Flow graphs for balancing


Ø400


[Pa]



DIRU

Measurement accuracy

If the velocity profile is asymmetric, the measurement values can differ from the ideal values. For this reason, the flow meter should never be located right up to any flow disturbance. The method error in the table below will differ, depending on the distance to the flow disturbance.

I = straight distance before and after disturbances	Method error ± 7%
	l≥1D
	l≥1D
	l≥3D
ØD -	l≥3D

UltraLink®

Lindab UltraLink® Controller FTCU

Mounting instruction

Technical information

Lindab UltraLink® Monitor FTMU

Mounting instruction

Technical information

Most of us spend the majority of our time indoors. Indoor climate is crucial to how we feel, how productive we are and if we stay healthy.

We at Lindab have therefore made it our most important objective to contribute to an indoor climate that improves people's lives. We do this by developing energy-efficient ventilation solutions and durable building products. We also aim to contribute to a better climate for our planet by working in a way that is sustainable for both people and the environment.

Lindab | For a better climate

