

Lindab/Tsolution Email: cadvent@lindab.de Telefon: 04532-285928 www.lindab.de

Inhalt

\checkmark	
Vorwort	1
Starte DIMsilencer	2
Lw: Suche SD	2
	–
Lw: Suche SD	2
Fingabe der bekannten Daten und Suche	···· ∠
Projektinformationen	2
Drucken	5
Suche Schalldämpfer	8
Dmp: Suche SD	8
Fingabe der bekannten Daten und Suche	0
Projektinformationen	11
Drucken	11
Wähle Schalldämpfer	13
Wahle SD	13
Eingabe der Schallleistungsdaten und Suche	13
Projektinformationen	17
Drucken	17
Berechnung zum Raum	18
	18
Allgemeine Information	
Vorgaben für den Raum	19
Luftauslässe einfügen	20
Einfügen weiterer Schallquellen	20
Ventilator einfügen	21
Verteilerkasten einfugen	22
I-Stuck / Kreuz-Stuck einlugen	23
Einfügen von eigenen Komponenten	24
Erstellen einer eigenen Komponente	25
Komponente entfernen	25
Schallanalyse	25
Suche Schalldämpfer	27
Berechnung speichern	29
Gespeicnerte Berechnung verwenden	29
	29
DIMsilencer 5.0 – CADvent 6.0	32

Vorwort

Dieses Handbuch beschreibt das Programm DIMsilencer und seine Verwendung als eigenständiges Produktauswahlprogramm. Es erklärt den Ablauf zur Bestimmung eines Schalldämpfers oder einer Schalldämpferkulisse.

Das Programm besteht aus 4 Modulen die in Anforderung der jeweiligen Aufgabe eine optimale Produktfindung ergeben.

Modul 1: Ermittlung der notwendigen Schalldämpfung aufgrund der Schallwerte vor dem Schalldämpfer und dem Sollwert frequenzabhängig oder als Summenschallpegel hinter dem Schalldämpfer.

Modul 2: Suche des passenden Schalldämpfers für eine vorgegebene Dämpfung und max. Eigenschallerzeugung.

Modul 3: Nachweis der Dämpfungswerte eines speziellen Schalldämpfers aus dem Lindab Schalldämpfer Sortiment.

Modul 4: Rechnerische Ermittlung der notwendigen Dämpfung in einem Lüftungssystem. Der kritische Strang kann Komponente für Komponente eingetragen und inkl. Luftauslass und Raumdaten berechnet werden.

Dieses Handbuch erläutert Schritt für Schritt wie der Nutzer die Module anwenden kann und welche Berechnungsprozeduren hinterlegt sind.

Jedes Modul gibt zum Abschluss ein Projektprotokoll aus mit der Projektbeschreibung, Vorgaben, Angaben des Planers und des Kunden. Alle Daten des Programms basieren auf Messungen gem. DS/EN ISO 7235 "Akustik – Messungen an Schalldämpfern in Kanälen – Einfügungsdämpfungsmaß, Strömungsgeräusch und Gesamtdruckverlust, 1995".

Starte DIMsilencer					
DIMsilencer 5.0	• X				
Datei Werkzeuge Einstellungen Hilfe					
🛛 🚍 📑 🖺 🚯 🦻 🔛 Lw: Suche SD 🙀 Dmp: Suche SD 📊 Wähle SD 🔂 System Ber	echnung				

DIMsilencer Startleiste mit den Symbolen der vier Berechnungsmodule. Gespeicherte Projekte können über das Menü Datei -> Projekt öffnen... oder über das Symbol register verden.

Zu beginn einer Schalldämpferauswahl sollten die gewünschten Einheiten für Volumenstrom und Schall ausgewählt werden. Änderungen können im Menü Einstellungen -> Einheiten vorgenommen werden.

DIMsilencer 5.0 -	Einheiten		X
100 80 මෙල ද 20 මෙල 20 20 20 20 20 20 20 20 20 20 20 20 20 2	dB(A) A-bewertet State A-bewertet State A-bewertet State State A-bewertet State State	B B C C C C C C C C C C C C C	

Lw: Suche SD

Modul 1: Ermittlung der notwendigen Schalldämpfung aufgrund der Schallwerte vor dem Schalldämpfer und dem Sollwert frequenzabhängig oder als Summenschallpegel hinter dem Schalldämpfer.

Eingabe der bekannten Daten und Suche

- 1 Drücke auf das Symbol "Lw: Suche SD"
- 2 Markiere die Position des Schalldämpfers: Außenluft, Zuluft, Fortluft oder Abluft. Die Position des Schalldämpfers zur Schallquelle kann Einfluss auf die Schallwerte haben. (Durch anklicken des Ventilatorsymbols können gespeicherte Ventilatordaten abgerufen werden)
- Trage die Schallleistungsdaten im Frequenzband vor dem Schalldämpfer ein.
 Im Textfeld "Anordnung nach:" kann eine Kurzbeschreibung der Schalldämpferposition im System eingegeben werden.
- 4 Die Option "Anforderung im Oktavband" unterscheidet zwischen der Eingabe einer bewerteten oder frequenzabhängigen Schallanforderung hinter dem Schalldämpfer.

(Wird die Eingabe der Anforderung hinter dem Schalldämpfer auf 0 belassen und die Suche gestartet, erscheint die Nachricht, dass kein Schalldämpfer die notwendigen Anforderungen erfüllt.)

Anforderu Anordnung	ng für Schalldäm _l nach:	ofer		
Schalldämp	ifer		🗖 Anf	forderung im Oktavband
	Lw vor Schalldämpfer	Dämpfung	Max Geräusch	Lw hinter Schalldämpfer
63 Hz	66			(dB)
125 Hz	66			(dB)
250 Hz	64			(dB)
500 Hz	61			(dB)
1000 Hz	51			(dB)
2000 Hz	49			(dB)
4000 Hz	40			(dB)
8000 Hz	38			(dB)
Summe	61			40 dB(A)

- 5 Trage den Volumenstrom und max. Druckverlust im Schalldämpfer ein. Die Geschwindigkeit im Anschlussdurchmesser variiert mit der Veränderung der Abmessungen.
- 6 Wähle den Kanaltyp "Rund" oder "Rechteckig" aus und bestimme den Schalldämpfertyp als Durchgangs- oder Bogenschalldämpfer.
- 7 Bestimme den Einregulierfaktor (siehe Seite)
- 8 Trage die Soll-Abmessungen a und b ein.
- 9 Trage die max. Länge (L1) ein, die für den Schalldämpfer zur Verfügung steht. Standardlängen für den DLD Schalldämpfer sind 650, 1250, 1850 und 2450.
 Für den reinigbaren Typ DLDR je +100 mm. Anlängungen X und Y für Bogenschalldämpfer min. 100mm.

Soll nur nach einer bestimmten Länge gesucht werden aktiviere die Box "Nur gewählte Länge suchen.".

Hinweis!

Beachte bei der Eingabe der Dimensionen die Geschwindigkeit! Zu hoher Volumenstrom oder zu kleine Abmessungen führen zu einer hohen Eigenschallerzeugung.

10 Kontrolliere alle Eingaben und drücke im Anschluss auf "Suche"

> Wird kein passender Schalldämpfer für die gewählten Anforderungen gefunden erscheint folgender Hinweis:

Ja, listet alle Schalldämpfer auf die den Abmessungen entsprechen, aber die schalltechnischen Anforderungen nicht erfüllen.

Nein, ermöglicht die Eingaben zu überprüfen.

Volumenstrom	4500	m³/h	Geschwindigkeit	3,9 m/s
Druckverlust:	80	Pa		

Kanaltyp		
C Rund	Rechteckig	
Schalldämpfer Typ-		
Durchgang	C Bogen	
Schalldämpfer		
Einregulierfaktor	1.0 💌 🤶	
Länge	2450 mm	
20.90		
🔲 Nur gewählte Läng	e suchen	
	I	
	b	
	<u> </u>	
а	L1	
	Suche Abbrecher	,
		_
Msilencer	- Martin	x
Keinen passenden	Schalldämpfer gefunden Zeige Gesamtauswah	ıl.

11 Suchergebnis

Das Suchergebnis listet eine Auswahl an Schalldämpfern auf, die den geforderten Abmessungen und den schalltechnischen Anforderungen entsprechen (Außer, wie unter Punkt 10 beschrieben)

DIMsilencer zeigt zu jedem Schalldämpfer: Dämpfung, Schallleistung (Lw) hinter dem SD, Druckverlust und Eigenschallerzeugung.

Durch markieren eines Schalldämpfers in der Scroll-Liste werden die technischen Daten, Abmessungen und Foto dieses Produkts im unteren Fensterbereich übersichtlich zusammengefaßt.

Alle Werte die nicht den Vorgaben entsprechen werden rot dargestellt.

12 Nun hat man die Möglichkeit die Breite, Höhe und die Länge nach seinen Vorgaben anzupassen. DIMsilencer passt die relevanten Daten entsprechend an. Zudem kann die KulissenKulissenanzahl geändert werden..

> Der ausgewählte Schalldämpfer wird mit der Taste "Zur Liste hinzufügen" der Projektliste angehängt. "Zurück" ermöglicht es dem Nutzer die Vorgaben zu kontrollieren und zu ändern.

13 Der gewählte Schalldämpfer erscheint in der Projektliste.

> Durch Markieren des Produkts werden alle technischen Daten im unteren Bildschirmbereich aufgeführt. Durch Beschreibung kann dem Schalldämpfer eine Projektbezeichnung zugeordnet werden.

14 War die Leistung des zuvor ausgewählten Schalldämpfers nicht ausreichend? (Punkt 10) Drücke "Neue Schalldämpfer"

TT UN 25 TO 10				
Real Property in the second second	The state of the state of the		-	
Bestimpte 8.85 28 to 76 XX 248	10 I	0 0 0	1	
The Childrente B Childrente officer				
🕈 bien Scultzender 🗍 Scultzende orderen				
the Statistic 1 Statistics officer	fectedary	Friddayle		
2 Nov Sculture 1 3 Sculture othere SLRS 200 50 750 300 2450	Successory	Siddayb		
the Schlingte 1 Schlingte offen SLRS 200 59 750 300 2450	finitubes	(Liddayb)		
a han Scaliterado 1 Scaliterado orteran LRS 200 50 750 300 2450	Sectorbarg	(independent)		
Inter Schlanger 1 Schlanger offener SLRS 200 50 750 300 2450 Annunge Hermany 10 Techning	fectively and	Stableyte U wh T Pa		
the Schlassen Schlassen ordered SLRS 200 69 760 300 2450 Andered thereage (Schlassen)	Encloses	Distance		
Alexicolateste Tensional and the second se	fectorburg Sectorolgist Sectoro	Jordinate T Pa T Pa T Pa		
the Schlinger the Schlinger the Schlinger SLRS 200 50 750 300 2450 Andereger Immunger The Schlinger The Schlinger	fectives	11 min 12 min 13 min 14 min 15 min 16 min 17 min 18 min 19 min 10 min		
the Schlinger of the Schlinger of the Schlinger of the Schlinger of Schlinger		Biddesh U T T S S S S S S		
beschedenzeite beschede	Fectivos Sectoros Durent 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U min U min		

15 Wiederhole die Schritte 4-10

Die Schallwerte "Lw vor Schalldämpfer" entsprechen nun den Schallwerten hinter dem zuvor gewählten Schalldämpfer. Dieser wird im Textfeld "Anordnung nach:" beschrieben.

- 16 Drücke "Suche"
- 17 Wähle aus der Liste der angezeigten Schalldämpfer das gewünschte Produkt aus und füge es der Projektliste zu.

Gebe Schalldämpferpostition an Umgebung	Raum
Aussenluft	Zuluft
Fortluft	Abluft

Anforderung für Schalldämpfer Anordnung nach: SLRS 200 50 750 300 2450 🔲 Anforderung im Oktavband Lw hinter Schalldämpfer Lw vor Schalldämpfer Max Geräusch Dämpfung 63 Hz 10 (dB) ·2 125 Hz (dB) -8 250 Hz (dB) 500 Hz (dB) 1000 Hz -12 (dB) -18 2000 Hz (dB) 4000 Hz -20 (dB) 8000 Hz -29 (dB) 0 0 dB(A) Summe 500 m³/h Volumenstrom Druckverl. 7 Pa

18 Die Projektliste enthält nun zwei Schalldämpfer, die zusammen die vorgegebene Schallanforderung erfüllen. Aus der Liste können einzelne Schalldämpfer entfernt werden um sie durch andere zu ersetzen.

Datei	Werkzeuge	Einstellunger
Proj	jekt öffnen	Ctrl+O
Spe	ichern	Ctrl+S
Spe	ichern unter	

Drucken

Beenden

📹 💾 📇 🚨

0123-145 790

Dieses Dialogfenster bei jedem neuen Projekt öffner

19 Projekt speichern.

Projektinformationen

1 Durch das Symbol () können Projektinformationen für den Ausdruck des Protokolls eingegeben werden.

2 Fülle alle Felder aus, die für die Projektspezifizierung wichtig sind. Die eingetragenen Daten bleiben für weitere Projekte gespeichert.

Hinweis: Kalkulation speichern, damit die Daten erhalten bleiben.

Msilencer - Suc	ne SD [BV Musterhalle]			
Projekt	BV Musterhalle			
Anlage Nr.	1234			
Datum	25.01.2010	•		
Bemerkung				
Erstellt für:		Erstellt von:		
Erstellt für:	Mike Mustermann	Bearbeiter	Steffen Gräfe	_
Firma	Muster AG	Firma	Lindab GmbH	
Straße	Musterstraße 4	Straße	Carl-Benz-Weg 18	_
			22941 Bargteheide	
Telefon	0123-456 789	Telefon	04532-28 58 0	_

04532 - 56 66 cadvent⊚indab.del

QK Abbre

Drucken

1

Drücke das Symbol

Ein technisches Auswahlprotokoll wird erstellt und die Voransicht am Bildschirm gezeigt.

- 2 Zur besseren Übersichtlichkeit kann das Bild durch die Zoomfunktionen vergrößert und verkleinert werden.
- ³ Mit Hilfe des Symbols ³ kann der aktive Drucker erfragt und gewechselt werden.
- 4 Durch "Drucker wählen" kann aus allen installierten Druckern der gewünschte ausgewählt werden.
- 5 Kontrolliere den gewählten Drucker und wähle aus ob alle oder nur bestimmte Seiten gedruckt werden sollen.
- 6 Bestätige mit OK.

Msilencer 5.0 - E	Oruckoptionen	— X
C Drucker		
Voransicht		
C Datei	C:\Users\Steffen\TAD\Ablage	
Format:	Adobe Acrobat (PDF)	-
nasnuatec DSmb.	22 (Kopierer)	<u></u>
	OK	Abbrechen

Musterhalle

AnlageNr.1234

Schalldämpfer Berechnung (Anforderung an Schallleistung)

08.02.2010

DIMsilencer 5.0

Produktbezeichnung SLRS 200 50 750 600 1250

Bլ B₀ _ <u>++-</u> +		2.
	b	12.22
- - a	1	-

Breite,a Höhe,b Kulisse/SpaltBt/Bd Länge(L1)

750 600 200/50 1250

Benennung		
Anlage1_Zuluft		
Anordnung		
Zuluft		
Anordnungach:		
Vol.str. [m3/h]	Druckverl	[Pa]
2000	15	

Beschreibung

SLRSisteinrechteckigergeraderSchalldämpferderAerodimSerie. Energiesparendekanalschalldämpfenätrömungsoptimierteeingebauten KulissenalsAbsorptionsschalldämpferRahmenkonstruktionausverzinktem Stahlblech DämpfungsmateriaLindteo@nitsbriebfeste/Oberflächeaus Glasseidengewebe, nichtbrennbamachDIN4102A2.Durchdasoptimierte aerodynamischeEinströmprofilundeiner/25cmAbströmstreckewerdenbeihohen DämpfungswerterniedrigeDruckverlusteundgeringeEigengeräuscheerzeugt. TechnischeEigenschaftengemessennachDINENISO7235.Die SchalldämpfermaterialiersindbiolöslictgemäßTRG9005alsuchEU-Richtlinie 97/89/EGundverhaltensichinertgegenüberPilz-bzw.Bakterienwachstum.Die hygienischenAnforderungerder//DI8022werdenerfüllt.

	Hz	63	125	250	500	1k	2k	4k	8k		dB(A)
LworSchalldämpfer		45	48	50	52	48	46	53	35	dB	57
Dämpfung		7	16	32	47	50	50	37	26	dB	
Eigenschall		31	19	13	11	9	5	3	-3	dB	15
LwhinteSchalldämpfer		39	33	19	12	9	6	16	9	dB	22

2

Suche Schalldämpfer

Modul 2: Suche des passenden Schalldämpfers für eine vorgegebene Dämpfung und max. Eigenschallerzeugung.

Eingabe der bekannten Daten und Suche

- 1 Drücke auf das Symbol "Suche SD"
- 2 Markiere die Position des Schalldämpfers: Außenluft, Zuluft, Fortluft oder Abluft. Die Position des Schalldämpfers zur Schallquelle kann Einfluss auf die Schallwerte haben.
- 3 Trage die gewünschten Dämpfungswerte im Frequenzband in die vorgegebenen Felder ein.
- 4 Gebe die max. Werte für die Eigenschallerzeugung in die vorgegebenen Felder ein. Voreinstellung für alle Frequenzen 99.
- 5 Trage den Volumenstrom und max. Druckverlust im Schalldämpfer ein. Der Druckverlust 0 sucht nach allen Schalldämpfern ohne Einschränkung für den Differenzdruck

Die Geschwindigkeit im Anschlussdurchmesser variiert mit der Angabe der Abmessungen.

6 Wähle den Kanaltyp "Rund" oder "Rechteckig" aus und bestimme den Schalldämpfertyp als Durchgangs- oder Bogenschalldämpfer.

⊢Anforderung für Schalldämpfe

Volumenstrom 3500 m³/h

	Lw vor Schalldämpfer	Dämpfung	Max Geräusch	Lw hinter Schalldämpfer
63 Hz		12	99	(dB)
125 Hz		14	99	(dB)
250 Hz		18	99	(dB)
500 Hz		24	99	(dB)
1000 Hz		26	99	(dB)
2000 Hz		26	99	(dB)
4000 Hz		22	99	(dB)
8000 Hz		20	99	(dB)
Summe			106	dB(A)

Druckverlust:	80 Pa	

Geschwindigkeit

2,7 m/s

Kanaltyp © Rund	Rechteckig
Schalldämpfer Typ © Durchgang	O Bogen

- 7 Bestimme den Einregulierfaktor (siehe Seite)
- 8 Trage die Soll-Abmessungen a und b ein.

Trage die max. Länge (L1) ein, die für den Schalldämpfer zur Verfügung steht. Standardlängen für den DLD Schalldämpfer sind 650, 1250, 1850 und 2450. Für den reinigbaren Typ DLDR je +100 mm. Anlängungen X und Y für Bogenschalldämpfer min. 100mm.

- 9 Soll nur nach einer bestimmten Länge gesucht werden aktiviere die Box "Nur gewählte Länge suchen.".
- 10 Kontrolliere alle Eingaben und drücke im Anschluss auf "Suche"

Wird kein passender Schalldämpfer für die gewählten Anforderungen gefunden erscheint folgender Hinweis:

DIMsilencer 4.0	×
Keinen Schalldämpfer mit den gewünschten Abmessungen gefunden	Zeige Alternativen!
(<u>la</u>) <u>N</u> ein	

Ja, listet alle Schalldämpfer auf die den Abmessungen entsprechen, aber die schalltechnischen Anforderungen nicht erfüllen.

Nein, ermöglicht die Eingaben zu überprüfen.

11 Suchergebnis

Das Suchergebnis listet eine Auswahl an Schalldämpfern auf, die den geforderten Abmessungen und den schalltechnischen Anforderungen entsprechen (Außer, wie unter Punkt 10 beschrieben)

DIMsilencer zeigt zu jedem Schalldämpfer: Dämpfung, Schallleistung (Lw) hinter dem SD, Druckverlust und Eigenschallerzeugung.

Durch markieren eines Schalldämpfers in der Scroll-Liste werden die technischen Daten, Abmessungen und Foto dieses Produkts im unteren Fensterbereich übersichtlich zusammengefaßt.

Alle Werte die nicht den Vorgaben entsprechen werden rot dargestellt.

Schalldämpfer	
Einregulierfaktor 1.0	•
Länge 2450	_ mm
🔲 Nur gewählte Länge suchen	
i ka ka ka i T	
	с
а	L1
	Sucha Abbrachan
	Abbiechen

											0.11 ×	
uche								Visi	ı oktavbar	d j	Damplung	
zeichnung	Druckve V	Länge	Preis	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	
DY 600 600 3000 20 17	22	3000		15	27	60	60	60	60	52	32	
DY 600 600 2500 20 17	21	2500		13	23	51	60	60	60	44	28	
ancer Information												
LDY 600 600 3 DLDY-Schalldämpter ist ei ziellem Dämpfungsmaterial	3000 20 17 n individueller Kanalsch für hohe Dämpfungsan	validämpfer r forderungen	nit strömung und gerings	soptimierter • Druckverl	Bes Einbauku uste: Durc	chreibung Jissen sowi h die Auße	ie zusätzli niviansku	Sen Auße issen wird	chalidämpi rwandkuli bei gleiche	er ssen aus en		
LDY-Schalldämpter ist ei zbEYY-Schalldämpter ist ei zbiefem Dämptungsmoterial nalabmessungen wie beim D	BOOOO 200 17 In individueller Kanalsch Rür hohe Dämpfungsan DLD eine wesenblich ve ren Bild	validämpter r forderungen rbesserte D	nit strömung und geringt ämpfung em	soptimienter e Druckverl sicht.	Bes Einbauku Luste. Durc	chreibung Jissen sowi h die Auße	ie zusätzli nivandku	Sen wird	chalidënpi rwandkul bei gleiche	er ssen aus en		
LDD/Schalidämpter ist ezellern Dämpfungern iste alsomessungen wie beim f inforderungen Abmessung	BOOD 20 17 in individueller Kanalsch für hohe Dämpfungsam DLD eine wesenblich ve gen Bild	salidämpter n forderungen rbesserte D	nit strömung und geringe ämphung em	soptimienter bruckverl sicht. Berechnur Geschwinn	Bes Einbauku uste: Durc ng ádakeit	chreibung dissen sowi h die Auße	ie zusätzli nivandku	Sen wird	chalidämpi rwandkuli bei gleiche	er ssen aus en		
r DLDY Schaldsimpler ist ei ziellem Dämpfungsmaterial nalabmessungen wie beim D unforderungen Abmessung	BOOD 20 17 in individualler Kanalich für hohe Dämpfungsam DLD eine weserklich ve ren Bild	salidämpfer r forderungen sbesserte D	nit strömung und geringt ämpfung em	optimierter Druckverl sicht. Berechnur Geschwins Druckverk	Bes Einbauku uste: Durc 1g gigkeit ast	chreibung dissen sowi h die Auße	ie zusätzli nivandku	2.7 m/s 22 Pa	challdämpf rwandkuli bei gleiche	er ssen aus m		
PLDY 600 600 3 PLDY Schalidämpter ist ei ziellem Dämpfungsmaterial nalabmessungen wie beim D	an individueller Kanalisch für hohe Dänpfungsan DLD eine weserklich ver ren Bild	validämpter n forderungen rbesserte D	nit strömung und geringt ämphung em	optimierter Druckverl sicht. Berechnur Geschwins Druckverk Hz	Bes Einbauku uste: Durc digkeit ast	chreibung áissen sowi h die Auße	ie zusätzli nivandku	2.7 m/s 22 Pa	challdämpf rewandkuli bei gleiche	er issen aus en		
LDY 600 600 3 DLDY Schaldampter ist et ciellen D'anplurgemetetist ausbemessungen vie beint rforderungen Abmessung	BOOD 20 17 In individualler Kanalisch für hohe Dängfungsan DLD eine wesentlich ve ten Bild	validämpter in forderungen isbesserte D	nit strömung und geringt ämphung em	Berechnur Geschwin Druckverk Druckverk Hz 63	Bes Einbauku uste: Durc ng ágkeit st	Chreibung dissen sowi h die Auße Dämpfun 15	ie zusätzli nivandkui	2.7 m/s 22 Pa Eigensch 40	chalidanpi rwandkul bei gleiche al	er issen aus m		
LDY 600 600 3 DLDY 60 4140 Mignete site Jelen D'anglugemeterial alabamessungen wie bem fi	an individueller Kanalisch für hohe Dängfungsam DLD eine weiservlich ver gen Bild	salidämpter n forderungen rbesserte D	nit strömung und geringe ämpfung em	Berechnur Geschwin Druckverl Druckverl Hz 63 125	Bes n Einbauku uste. Durc sg sigkeit sst	Dimpfun 15 27	ie zusätzli nivendku	2.7 m/s 22 Pa Eigensch 40 33	chalidenpl rwandkul bei gleiche al	er issen aus in dit dit		
LDY 600 600 3 DLIY6 chaldingler inter siellen Dänpfungsmaterial alabenessunger Abmessung	an odkolader Kanalich für hohe Dänglungsan DD eine weserklich ve gen Bild	validämpfer n forderungen rbesserte D	nit strömung und geringe ämpfung em	Berechnur Geschwin Druckverk Hz 63 125 250	Bes n Einbauku uste. Durc sg sigkeit sst	bien sow h die Auße Dämpfun 15 27 60	ie zusätzli nivrandku	2.7 m/s 22 Pa Eigenech 40 33 26	chalidanpi rwandkul bei gleiche al	er issen aus in de de de		
r(DLP) 400 400 400 400 400 400 400 400 400 40	an individualier Kanalach in individualier Kanalach für hohe Dänglungsam Libb eine vereinflich ver gen Bid	salldämpter n forderungen rbesserte D	nit strömung und geringt impfung em	Berechnur Geschwin Druckverk Hz 63 125 250 500	Bes n Einbauku uste: Durc sg sigkeit sst	bienebung dissen sow h die Auße Diempfun 15 27 60 60	ie zusätzli nivrandku	2.7 m/s 2.2 Pa Eigenoch 40 33 26 23	chalideingd rwandkul bei gleiche	er issen aus m di di di di di di di		
In DUY 600 600 2 IP DUY 5chaldingfer in te ceilem Dänghungematerial nalabmessungen veie beim unfordenungen Abmessung	BOOD 20 17 In rich date Kranisch Rich ohe Diegender DLD ene weserlich ve gen Bid	salkdömpfer r forderungen rbessette D	nit strömung und geringt ämpfung em	Berechnur Geschwin Druckverk Hz 63 125 2500 1000	Bes n Einbauku uste. Durc g tigkeit st	Dampfun 15 27 60 60 60	ie zusätzi nivandkui	2.7 m/s 22 Pa Eigenoch 40 33 26 23 19	chalideinpl rwandkul bei gleiche	er issen aus m di di di di di di di di di di di di di		C Zunick
In DLDY GOAD Construction of the second seco	BOOD 20 17 in rich duater Kanalusa Rich hole Dangehungan DLD ene wesertlich ve gen Bid	halklämpfer r forderungen sbessette D	nit strömung und geringt ämpfung em	Berechnur Geschwin Druckverk Hz 63 125 2500 500 1000 2000	Bes LEinbauk, Luste. Durc ng đgkeit st	Diampfun 15 27 60 60 60 60	ie zuskizi nivandku	5 chen Auße issen wird 2.7 m/s 22 Pa Eigenech 40 33 26 23 19 13	chalideingd rwwandkub bei gleiche	er ssen aus n de de de de de de de de de de de de de		C Zunick
Information and a second	BOOD 20 17 In rich diabeter Kanatak III hade Dangtungsan DLD ene wesertich ve gen Bid	salidämpfer n forderungen sbessete D	nit strömung und geringe ämpfrung em	Berechnur Geschwin 125 250 500 1000 2000	Bes Einbauk, uste: Durc Sg ägkeit ast	Diampfun Diampfun 15 27 60 60 60 52	ie zuskizi nivandku	5 chen Aube issen wird 22 Pa Eigenoch 40 33 26 23 19 13 7	challdainpi rwvandkul bei gleichd	er ssen aus in de de de de de de de de de de de de de		C Zunick
ALDY 600 600 3 IP (JUY 54) Addisorder in et and admension of the second second and admension of the second second Advordenungen Atmessing	BOOD 20 17 In rid-vid-after Kanalurgian III: hohe Disnytherian DLD ene wesertlich ver pen Bid	halldämpfer in forderungen sbessette D	nit strömung und geringe ämpfung em	Betechnur Geschnin Druckvetk Hz 63 125 500 1000 2000 4000	Bes Einbauk, uste. Durc sg ágkeit ast	breibung dissen sow h die Auße Dampfun 15 27 60 60 60 60 60 52 32	ie zusätzi nivandku	2.7 m/s 22 Pa Eigenoch 33 26 23 19 13 7 1	challdöinpi rwvandkuå bei gleiche	er ssen aus in de de de de de de de de de de de de de	✓ 2)	😷 Zunick ar Liste Hinzufü
ALTY 600 600 3 to (LLY 600 600 1 to (LLY 600 600 1 and diversity of the second and diversity of the second Africation of the second Africation of the second and the se	BOOD 20 17 In rich dubber Kanalich If hohe Dangturgsan DLD ene weserlich ve yen Bid	validämpfer n forderungen rbesserte D	nit strömung und gerings simplung em	Berechnur Geschwin Druckverk Hz 63 125 500 1000 2000 4000 8000 Summe	Bes Einbauko uste. Durc g g digkeit ast	chreibung dissen sow h die Auße Dampfun 15 27 60 60 60 60 52 32	ie zusätzi nivandku	5 chen Auße issen wird 22 Pa Eigenoch 40 33 26 23 19 13 7 1 25	challdainpi rwyandkuli bei gleiche al	er ssen aus m de de de de de de de de de de de de de	✓ 2	🕈 Zunicek Ir Liste Hinzufü

- 12 Der ausgewählte Schalldämpfer wird mit der Taste "Zur Liste hinzufügen" der Projektliste angehängt. "Zurück" ermöglicht es dem Nutzer die Vorgaben zu kontrollieren und zu ändern.
- 13 Der gewählte Schalldämpfer erscheint in der Projektliste.

Durch Markieren des Produkts werden alle technischen Daten im unteren Bildschirmbereich aufgeführt. Durch Beschreibung kann dem Schalldämpfer eine Projektbezeichnung zugeordnet werden.

- 14 War die Leistung des zuvor ausgewählten Schalldämpfers nicht ausreichend? (Punkt 10) Drücke "Neue Schalldämpfer".
- 15 Wiederhole die Schritte 4-10

Die Schallwerte "Lw vor Schalldämpfer" entsprechen nun den Schallwerten hinter dem zuvor gewählten Schalldämpfer. Dieser wird im Textfeld "Anordnung nach:" beschrieben.

- 16 Drücke "Suche"
- 17 Wähle aus der Liste der angezeigten Schalldämpfer das gewünschte Produkt aus und füge es der Projektliste zu.
- 18 Die Projektliste enthält nun zwei Schalldämpfer, die zusammen die vorgegebene Schallanforderung erfüllen. Aus der Liste können einzelne Schalldämpfer entfernt werden um sie durch andere zu ersetzen.
- 19 Projekt speichern.

Datei	Werkzeuge	Einstellunger
Pro	jekt öffnen	Ctrl+O
Spe	ichern	Ctrl+S
Spe	ichern unter	
Dru	cken	
Bee	nden	

Projektinformationen

- 1 Durch das Symbol (6) können Projektinformationen für den Ausdruck des Protokolls eingegeben werden.
- 2 Fülle alle Felder aus, die für die Projektspezifizierung wichtig sind. Die eingetragenen Daten bleiben für weitere Projekte gespeichert.

Hinweis: Kalkulation speichern, damit die Daten erhalten bleiben.

rojekt	BV Musterhalle		
nlage Nr.	1234		
atum	25.01.2010	•	
emerkung			
rstellt für: rstellt für: irma	Mike Mustermann Muster AG	Erstellt von: Bearbeiter Firma	Steffen Gräfe Lindab GmbH
stellt für: rstellt für: ima traße	Mike Mustermann Muster AG Musterstraße 4	Erstellt von: Bearbeiter Firma Straße	Stelfen Gidfe Lindab Gm2H [CarlBenz-Weg 18 [22941 Bargtehoide
rstellt für: rstellt für: irma traße elefon	Mike Mustermann Muster AG Musterstraße 4 [0123-456 789	Erstellt von: Bearbeiter Firma Straße Telefon	Stellen Gräte Lindab GmbH Carl Benz-Weg 18 22341 Bargteheide 04532:28 56 0
rstellt füir: rstellt füir: irma traße elefon ax	Mike Mustermann Muster AG Musterstraße 4 0123-456 789 0123-455 789	Erstellt vorc Bearbeiter Firma Straße Telefon Fax	Stellen Gräte Lindab GmbH Carl@ers.Weg 10 22941 Bargteheide 04532:2556 0 04532: 25 66

Drucken

1 Drücke das Symbol

Ein technisches Auswahlprotokoll wird erstellt und die Voransicht am Bildschirm gezeigt.

- 2 Zur besseren Übersichtlichkeit kann das Bild durch die Zoomfunktionen vergrößert und verkleinert werden.
- ³ Mit Hilfe des Symbols ³ kann der aktive Drucker erfragt und gewechselt werden.
- 4 Durch "Drucker auswählen" kann aus allen installierten Druckern der gewünschte ausgewählt werden.
- 5 Kontrolliere den gewählten Drucker und wähle aus ob alle oder nur bestimmte Seiten gedruckt werden sollen.
- 6 Bestätige mit OK.

O Drucker		
Voransicht		
O Datei	C:\Users\Steffen\TAD\Ablage	
Format:	Adobe Acrobat (PDF)	-
nashuatec DSm62	22 (Kopierer)	<u></u>

Wähle Schalldämpfer

Modul 3: Nachweis der Dämpfungswerte eines speziellen Schalldämpfers aus dem Lindab Schalldämpfer Sortiment.

Eingabe der Schallleistungsdaten und Suche

1 Drücke auf das Symbol "Wähle SD"

3

2 Markiere die Position des Schalldämpfers: Außenluft, Zuluft, Fortluft oder Abluft. Die Position des Schalldämpfers zur Schallquelle kann Einfluss auf die Schallwerte haben.

(Durch anklicken des Ventilatorsymbols können gespeicherte Ventilatordaten abgerufen werden)

Trage die Schallleistungsdaten im Frequenzband vor dem Schalldämpfer ein.

Im Textfeld "Anordnung nach:" kann eine Kurzbeschreibung der Schalldämpferposition im System eingegeben werden.

Auf den nachfolgenden Reihen werden nun die technischen Daten des Ausgewählten Schalldämpfers angezeigt : Dämpfung, Eigenschallerzeugung Lw hinter Schalldämpfer

4 Trage den Volumenstrom ein

Bewerteter Schallleistungspegel

Die Geschwindigkeit im Anschlussdurchmesser variiert mit der Angabe der Abmessungen.

Werte die außerhalb der technischen Zulassung sind oder nicht den Anforderungen entsprechen werden als **roter Text** dargestellt. Beispiel:

Anforder Anordnung	ung für nach:	Schalldämpfe			
Ventilator					
		Lw vor Schalldämpfer	Dämpfung	Max Geräusch	Lw hinter Schalldämpfer
63 Hz	(dB)	50	5	51	52
125 Hz	(dB)	50	10	45	46
250 Hz	(dB)	50	23	40	40
500 Hz	(dB)	50	33	38	38
1000 Hz	(dB)	50	33	36	36
2000 Hz	(dB)	50	23	31	32
4000 Hz	(dB)	50	15	27	36
8000 Hz	(dB)	50	9	22	41
Summe	dB(A)	57		41	44

Volumenstrom	3500	m3/h			
Druckverlust:	75	Pa	Geschwindigkeit	5,4	m/s

Volumenstrom	9000	m3/h				
Druckverlust:		Pa	Geschwindigkeit	20,9	m/s	

- 5 Wähle den Kanaltyp "Rund" oder "Rechteckig" aus und bestimme den Schalldämpfertyp als Durchgangs- oder Bogenschalldämpfer
- 6 Bestimme den Einregulierfaktor (siehe Seite)
- 7 Trage die Soll-Abmessungen a und b ein.
- 8 Trage die Länge (L1) ein, für die der Schalldämpfer berechnet werden soll. Standardlängen für den DLD Schalldämpfer sind 650, 1250, 1850 und 2450.
 Für den reinigbaren Typ DLDR je +100 mm. Anlängungen X und Y für Bogenschalldämpfer min. 100mm.
- 9 Trage den Kode für den Schalldämpfer Typ ein und beobachte dabei die technischen Daten. Oft gilt: je höher die Dämpfung – desto höher der Druckverlust und die Eigenschallerzeugung.
 Wähle den Schalldämpfer der den Forderungen am nächsten ist.

Hinweis !

Nutze die Pfeiltasten auf und ab um schnell aus den Abrollmenüs, z. B. dem Typ den optimalen Schalldämpfer herauszufinden.

- 10 Ist der richtige Schalldämpfer ausgewählt drücke: "Zur Liste hinzufügen".
- 11 Der gewählte Schalldämpfer erscheint in der Projektliste.

Durch Markieren des Produkts werden alle technischen Daten im unteren Bildschirmbereich aufgeführt. Durch Beschreibung kann dem Schalldämpfer eine Projektbezeichnung zugeordnet werden.

Durch die Taste "Neue Schalldämpfer" können weitere Schalldämpfer in das Projekt eingefügt werden.

Die Funktion Schalldämpfer ändern ruft die Daten des markierten Produkts erneut auf um Anpassungen vornehmen zu können.

Schalldämpfer entfernen löscht das markierte Produkt aus der Projektliste.

Schalldämpfer	
C Rund	Rechteckig
Schalldämpfer Typ © Durchgang	C Bogen
Einregulierfaktor	1.0 💌 👰
Schalldämpfer	SLRS 🗸
Breite, a	900 mm
Höhe, b	800 mm
Kulisse / Spalt (Bt/Bd)	200/100 💌 mm
Länge	2450 💌 mm
Bt Bd H H H H H H H H H H H H H H H H H H H	
	Zur Liste hinzufügen Abbrechen

12 Wiederhole die Schritte 4-10 um weitere Schalldämpfer auszuwählen.

ebe Schalldä	mpferpostition	an			Schalldämpfer	
ngebung				Raum	C Rund	Rechteckig
asenluft			" <u> </u>	Zuluft	Schalldämpfer Typ © Durchgang	C Bogen
etluft 🔶				Abluft	Einregulierfaktor	1.0 💌 💽
nforderung fü	r Schalldämpfe				Schalldämpfer	DLD
sskrivning av Le entilator	/ före				Innen Ø (D1)	600 mm
	Lw vor Schalldämpfer	Dämpfung	Max Geräusch	Lw hinter Schalldämpfer	Тур	1017 💌
53 Hz (dB)	50	5	51	52	Max. äußeres Maß	300 mm
25 Hz (dB)	50	10	45	46	Länge	1500 mm
50 Hz (dB)	50	23	40	40	Standardlängen DLD, D	LDY: 650, 1250, 1850, 2450. DLDR:
00112 (dB)	50	33	36	36	750, 1350, 1350, 2550	
000 Hz (dB)	50	23	31	32	(100 100 100) T	
000 Hz (dB)	50	15	27	36	b and a set of the set	
000 Hz (dB)	50	9	22	41		
Summe dB(A)	57		41	44	a	Ц
olumenstrom	3500 m	3/h				
ruckverlust	75 P	a Ges	-bwindink eit	5.4 m/s		1

- 18 Die Projektliste enthält nun alle ausgewählten Schalldämpfer.
- 19 Projekt speichern.

Datei	Werkzeuge	Einstellunger				
Projekt öffnen Ctrl+O						
Speichern Ctrl+S						
Speichern unter						
Drucken						
Bee	nden					

1

Projektinformationen

- 1 Durch das Symbol (6) können Projektinformationen für den Ausdruck des Protokolls eingegeben werden.
- 2 Fülle alle Felder aus, die für die Projektspezifizierung wichtig sind. Die eingetragenen Daten bleiben für weitere Projekte gespeichert.

Hinweis: Kalkulation speichern, damit die Daten erhalten bleiben.

9, 9, 🖻

Projekt	BV Musterhalle			
nlage Nr.	1234			
Datum	25.01.2010	•		
emerkung				
rstellt für: rstellt für: irma	Mike Mustermann Muster AG	Erstellt v Bearbeite Firma	en.	Stelfen Gräfe Lindab GmbH
stellt für: rstellt für: ima traße	Mike Mustermann Muster AG Musterstraße 4	Erstellt vi Bearbeite Firma Straße	enc. er	Steffen Gräfe Lindab GmbH Carl-Benz-Weg 18 22941 Bangteheide
rstellt für: rstellt für: irma traße elefon	Mike Mustermann Muster AG Musterstraße 4	Erstellt vi Bearbeite Firma Straße Telefon	enc	Stelfen Gräfe Lindab GmbH [CaHBenz-Weg 18 [2294] Bargteheide [04532:28 58 0
rstellt für: rstellt für: irma traße elefon ax	Mike Mustermann Muster AG Musterstraße 4 0123-456 789 0123-456 789	Erstellt vn Bearbeite Firma Straße Telefon Fax	enc	Stellen Grale Lindab GmbH CaHBenz-Weg 18 22341 Bargeheide 04532-58 50 0 04532-56 66

🖹 Zoom 100.0

%

Drucken

1 Drücke das Symbol 🙆

Ein technisches Auswahlprotokoll wird erstellt und die Voransicht am Bildschirm gezeigt.

- 2 Zur besseren Übersichtlichkeit kann das Bild durch die Zoomfunktionen vergrößert und verkleinert werden.
- ³ Mit Hilfe des Symbols ikann der aktive Drucker erfragt und gewechselt werden.
- 4 Durch "Drucker auswählen" kann aus allen installierten Druckern der gewünschte ausgewählt werden.
- 5 Kontrolliere den gewählten Drucker und wähle aus ob alle oder nur bestimmte Seiten gedruckt werden sollen.
- 6 Bestätige mit OK.

Berechnung zum Raum

🖞 Raum Berechnung

Modul 4: Rechnerische Ermittlung der notwendigen Dämpfung in einem Lüftungssystem. Der kritische Strang kann Komponente für Komponente eingetragen und inkl. Luftauslass und Raumdaten berechnet werden.

Allgemeine Information

Das Modul 4 von DIMsilencer ist ein leistungsstarkes Werkzeug zur Berechnung der Schallwerte eines gesamten Lüftungsstranges bis zu einem Raum. Alle Einflussfaktoren im Raum, wie Raumdämpfung, Anzahl und technische Eigenschaften aller Luftdurchlässe können ebenfalls berücksichtigt werden.

Besteht nicht die Möglichkeit einer CAD-Planung mit Schallberechnung z. B. CADvent[®] aus dem Hause Lindab, ist die Kalkulation des ungünstigen Stranges eines Systems durch dieses Modul umfassend möglich. Das Programm berücksichtigt nicht die Schallübertragung von Raum zu Raum.

Bevor die einzelnen Komponenten des Strangverlaufs eingegeben werden können müssen drei Informationen hinterlegt werden: Raumdaten, Luftauslässe und Ventilator. Alle weiteren Optionen werden in den Eingabemasken ausgeblendet bis die notwendigen Informationen eigegeben sind

Eine Strangberechnung mit

Volumemstromangaben sollte vorliegen um eine ausreichend genaue Abschätzung des Strangverlaufs vorgeben zu können, vom Ventilator über alle Kanäle, Formteile, Anschlussstutzen bis zum Raum.

Der Aufbau der Berechnung ermöglicht es bei mehreren nahezu gleichen Räumen eine gespeicherte Kalkulation zu öffnen und durch ändern, entfernen und zufügen von Vorgaben und Komponenten diese den Gegebenheiten des neuen Raumes anzupassen.

Der obere Bereich des Fensters zeigt eine Übersicht des aktuellen Schalldruckpegels und einiger Vorgaben des Raums.

Die Tabellen im mittleren Fensterbereich zeigen alle Komponenten des Abluft- und Zuluftstrangs.

Vorgaben für den Raum

- 1 Gebe eine Bezeichnung für den Raum ein
- 2 Trage die Abmessungen des Raums ein.
- 3 Gebe den zulässigen Schalldruckpegel Lp für den Raum ein.
- Bestimme den Raum Typ.
 Die Raumdämpfung R und der Absorptionsgrad α werden dargestellt.
 Kann der Raum nicht in die Standardklassifikationen sehr gedämpft, gedämpft, normal, hart und sehr hart, eingeordnet werden, besteht auch die Möglichkeit den Alphawerte oder die Nachhallzeit frequenzabhängig vorzugeben.
- 5 Trage die Anzahl der Zu- und Abluftdurchlässe ein. Sollen weitere Schallquellen in der Schallberechnung berücksichtigt werden, z. B, Umluftkühlgeräte usw. Trage die Anzahl dieser Schallquellen unter "Andere Schallquellen" ein.
- 6 Bestimme ob die Abstandsdämpfung D der Schallquellen automatisch berechnet oder ob diese selbst definiert werden sollen
- 7 Gebe die Anordnung Q des ungünstigsten Auslasses/ Schallquelle ein. Diese bestimmt den Einfluss des Direkt- und Diffusfeldes. Siehe Kurzbeschreibung Direktfeld/Diffusfeld.
- 8 Bestätige die Eingaben mit "Zur Liste hinzufügen". Der Raum wird nun als oberste Komponente in die Tabelle für Zu- und Abluft eingefügt.

Direktfeld/Diffusfeld

Bei kurzer Distanz zwischen Auslass und Behaglichkeitsfeld hat die Raumdämpfung wenig Einfluss auf den Schall. DIMsilencer kalkuliert den ersten Auslass im Abstand r und der Anordnung Q im Direktfeld (Abstandsdämpfung), weitere Auslässe werden im Diffusfeld berechnet.

Luftauslässe einfügen

1 Markiere mit der linken Maustaste den Raum in der Zuluftliste für den nun Luftauslässe eingefügt werden sollen.

Drücke mit der rechten Maustaste auf den Raum oder aktiviere die Taste "Komponente einfügen".

 Es erscheint eine Auswahlliste mit Funktionen die ausgewählt werden können. Wähle "Luftdurchlass einfügen".
 Im unteren Fensterbereich erscheint nun eine Liste mit Luftdurchlässen für Zuluft aus dem

LindabComfort Programm.

Eigene Luftdurchlässe können im Programm hinterlegt werden, siehe "Erstellen einer eigenen Komponente".

Das Registerfeld "Resultat Durchlass" gibt die technischen Daten am Auslass wieder, das Registerfeld "Bild" zeigt eine Darstellung des gewählten Auslasses.

- 3 Wähle den gewünschten Auslass und trage Volumenstrom und Druckverlust ein.
- 4 Bestätige die Auswahl mit "Zur Liste hizufügen".
- 5 Wiederhole die Schritte 1 -4 für die Abluftseite. DIMsilencer erkennt automatisch, dass nun ein Abluftauslass gewählt werden soll und erstellt eine Liste ausschließlich mit Abluftauslässen.

Hinweis:

Beachte nach Eingabe der technischen Daten des Auslasses die Eigenschallerzeugung im Registerfeld "Resultat Durchlass". Auf diesem Wege kann eine Grobeinschätzung erfolgen ob die Auslassgröße die korrekte Wahl für den Raum war.

Hinweis:

Die Kalkulation der Schallwerte im Raum geht von der Variante aus: Alle Zuluftdurchlässe eines Raumes haben die gleiche Luftmenge und erzeugen den gleichen Schallpegel. Gleiches gilt für die Abluft.

Einfügen weiterer Schallquellen

Markiere den Raum und trage die Anzahl zusätzlicher Schallquellen ein. Durch die Taste oder rechter Mausklick auf den Raum -> Komponente einfügen -> andere Schallquelle einfügen, können die Bezeichnung und Schalldaten der zusätzlichen Schallquellen eingetragen werden.

Ventilator einfügen

- 1 Markiere den Zuluftauslass in der Tabelle Zuluft und wähle "Komponente einfügen". (Rechter Mausklick – Menü oder Funktionstaste)
- 2 Wähle "Ventilator einfügen".

Im unteren Fensterfeld erscheint eine Tabelle mit gespeicherten Ventilatoren. Der einfachste Weg zur Erstellung eines Ventilators besteht darin einen bestehenden Ventilator aufzurufen und die Daten zu ändern.

Sollen mehrere Ventilatoren angelegt werden, können die Eingaben durch die Taste Speichern gesichert werden und weitere Venitlatoren angelegt werden.

3 Markiere den gewünschten Ventilator oder erstelle ein neues Produkt und bestätige mit "Zur Liste hinzufügen". Der Ventilator wird der Projektliste zugefügt und gleichzeitig gespeichert.

> Für jeden Ventilator kann der Schall für die Saugeseite und die Druckseite eingegeben werden, sodass die gleiche Komponente für beide Luftrichtungen eingefügt werden kann.

- 4 Markiere den Durchlass für Abluft und wähle "Komponente einfügen".
- 5 Wähle "Ventilator einfügen", markiere oder erstelle den Ventilator.
- 6 Drücke "Zur Liste hinzufügen".

Ventilator				
	E	lenennung	Ventilati	ж
⊟ Übersicht iH Eshnikat	(Übersicht	Ventilati	x
Wentiliston Badialventilaror XY				
	Berechnung			
	Produkt			
	Vol.str.	0 m3/h	Druck	0 Pa
	Hz	Schall, SaugseSc	hall, Druckseite	Lw hinter
	63		0	0 d8
	125	0	0	0 dB
	250			0 08
	1000			0 00
	2000			0 08
	4000	- č	- i	0 48
	8000	0	0	0 d8
Speichern Löschen	Summe			7 dB(A)

Zur Erstellung einer Pfadstruktur für mehrere Hersteller, markiere das oberste Verzeichnis (Übersicht) und trage den Namen des Herstellers unter "Übersicht", Bezeichnung des neuen Typen unter "Produkt" und die technischen Daten ein. Klicke auf "Speichern". Es wird ein neues Verzeichnis mit dem angegebenen Herstellernamen erstellt.

Um die Daten eines gewählten Ventilators zu ändern, markiere diesen in der Projektliste, ändere die Daten im unteren Fenterbereich und bestätige mit "Zur Liste hinzufügen".

Verteilerkasten einfügen

- 1 Markiere den Ventilator in der Tabelle Zuluft und wähle "Komponente einfügen". (Rechter Mausklick – Menü oder Funktionstaste)
- 2 Wähle "Verteilerkasten einfügen".
- 3 Trage die Abmessungen des Kastens ein. Die Innere Oberfläche wird errechnet.
- 4 Bestimme ob die Position des Lufteintritts an einem der beiden Enden oder einer der vier Seiten vorgesehen ist und trage dessen Abmessung ein.
- 5 Wiederhole Schritt 4 für den für die Berechnung relevanten Luftaustritt.
- 6 Aktiviere das Auswahlkästchen vor "Kulisse", wenn der Verteilerkasten mit einer schalldämmenden Kulisse ausgestattet ist.
- 7 Gebe an ob die Kulisse längs zur Kastenlänge (Seite) oder quer zur Länge (Ende) eingebaut ist.
- 8 Bestimme ob die Kulisse beidseitig mit einer aktiven Dämmschicht ausgestattet ist.
- 9 Wähle unter Dämmmaterial aus, mit welchem Dämmstoff die Kulisse gefüllt ist. Über "Selbst definierte Alpha-Werte" können die frequenzabhängigen Dämmwerte für alle gewünschten Materialien eingetragen werden.
- 10 Bestätige die Auswahl mit "Zur Liste hinzufügen".
- 11 Soll für die Abluft ebenfalls ein Verteilerkasten eingefügt werden, wiederhole die Schritte 1-10.

Bei gegenüberliegenden Anschlüssen, z.B. Ende-Ende, kann der Verteilerkasten auch als innen gedämmtes Rohr/ Kanal gerechnet werden. Hierzu ist es notwendig eine Kulisse einzusetzten.

Um nachträglich die Benennung des Verteilerkastens zu ändern, z.B. zu "Kanal mit Innendämmung", wähle die Komponente aus der Projektliste aus und ändere die Benennung im unteren Fensterbereich.

Zum Ändern der technischen Daten, wähle den Verteilerkasten aus der Projektliste aus und ändere die Daten im unteren Fensterbereich. Bestätige die Eingabe mit "Zur Liste hinzufügen". Es erscheint die Abfrage, ob der bestehende Verteilerkasten entfernt werden soll. Bestätige mit Ja.

T-Stück / Kreuz-Stück einfügen

Rund / Rechteckig

- 1 Markiere die Komponente in der Projektliste hinter der das T-Stück eingefügt werden soll und wähle "Komponente einfügen". (Rechter Mausklick – Menü oder Funktionstaste)
- 2 Wähle T-Stück einfügen
- 3 Wähle Rund oder Rechteckig
- 4 Bestimme den Schallweg durch die Komponente. Durch "Nächstes Bild" können die unterschiedlichen Varianten gewählt werden.
- 5 Trage die Dimensionen der Anschlüsse ein.
- 6 Trage die Volumenströme ein. (Diese sind notwendig um die Eigenschallerzeugung des T-Stücks zu ermitteln.)
- 7 Bestätige die Eingaben mit "Zur Liste hinzufügen".

Einfügen mehrerer T-Stücke

Wiederhole Schritte 1-7 und bestätige mit "Zur Liste hinzufügen".

Es erscheint die Abfrage, ob die bestehende Komponente entfernt werden soll.

Die Bestätigung mit "Ja" wird die vorherige Komponente ersetzen.

"Nein" wird das erstellte T-Stück zur Liste hinzufügen, so dass mehrere T-Stücke in den Strangverlauf eingefügt werden können.

TCPU-200-200			Beteckning T-stycke			•	
d2, q2 d1 d3 Năsta bid	d) [1 200 mm d2 200 mm q2 00 V2 q3 0 V5	d3 200 mm	Hz 63 125 250 500 1000 2000 4000 8000	Lw före 100 100 100 100 100 100 100 100	Dämpring 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Egenijudsolstring 0 0 0 0 0 0 0 0 0 0	Live efter 97 dB 97 dB 97 dB 97 dB 97 dB 97 dB 97 dB 97 dB 97 dB 97 dB
			vagt	107		7	104 dB(A

Um nachträglich die Benennung des T-Stücks zu ändern, wähle die Komponente aus der Projektliste aus und ändere die Benennung im unteren Fensterbereich.

Zum Entfernen einer Komponente aus der Projektliste, wähle diese aus und drücke "Komponente entfernen".

Alle Komponenten können entfernt werden, außer Räume, Luftauslässe und Ventilatoren, da diese für die Schallberechnung der Räume notwendig sind.

Drossel einfügen

Rund / Rechteckig

- 1 Markiere die Komponente in der Projektliste hinter der eine Drossel eingefügt werden soll und wähle "Komponente einfügen". (Rechter Mausklick – Menü oder Funktionstaste)
- 2 Wähle Drossel einfügen.
- 3 Wähle aus der Auswahlliste eine Drossel aus.
- 4 Trage den Volumenstrom und den Druckverlust ein. (Bei "Eigene Drosselklappen" ist der Volumenstrom und Druckverlust vorgegeben und kann nicht verändert werden)
- 5 Bestätige die Eingaben mit "Zur Liste hinzufügen".

Bei runden Drosselklappen wird der emitierte Schall durch den Volumenstrom und den Druckverlust errechnet.

Rechteckige Drossel- und Jalousieklappen sind in vielen Abmessungen verfügbar und müssen daher als eigene Komponente erstellt werden.

Um nachträglich die Benennung der Drossel zu ändern, wähle die Komponente in der Projektliste aus und ändere die Benennung im unteren Fensterbereich.

Einfügen von eigenen Komponenten

Gültig für alle Produkte.

- 1 Markiere die Komponente in der Projektliste hinter der die eigene Komponente eingefügt werden soll und wähle "Komponente einfügen". (Rechter Mausklick – Menü oder Funktionstaste)
- 2 Wähle "Eigene Komponente einfügen"
- 3 Wähle die Komponenten aus der Auswahlliste aus.
- 4 Bestätige die Eingaben mit "Zur Liste hinzufügen".

Einfügen mehrerer eigener Komponenten

Sollen mehrere selbst erstellte Komponeten hintereinander in die Projektliste eingefügt werden, wiederhole Schritt 1 – 4.

Es erscheint die Abfrage, ob die bestehende Komponente entfernt werden soll. Bestätige mit Nein. (Ja ersetzt die bestehende Komponente, Nein fügt die neue Komponente hinter die vorherige ein.)

Lw vor und Lw hinter werden dargestellt nachdem das Produkt in die Projektliste eingefügt wurde und die Schallwerte an dieser Stelle berechnet sind.

Um nachträglich die Benennung der Komponente zu ändern, wähle die Komponente in der Projektliste aus und ändere die Benennung im unteren Fensterbereich.

Erstellen einer eigenen Komponente

Wähle den Ordner mit der Produktgruppe aus, zu der eine eigene Komponente zugefügt werden soll.

Trage unter "Produkt" die Bezeichnung der Komponente ein.

Trage Druckverlust, Volumenstrom, Dämpfung und Eigenschallerzeugung ein.

Um mehrere Produkte in die Auswahlliste einzutragen, speichere die jeweilige Eingabe mit "Speichern" und wiederhole dieses mit den weiteren Komponenten.

Komponente entfernen

Gültig für alle Produkte.

- 1 Markiere die Komponente in der Projektliste, die entfernt werden soll.
- 2 Drücke "Komponente entfernen".

Alle Komponenten können entfernt werden, außer Räume, Luftauslässe und Ventilatoren, da diese für die Schallberechnung der Räume notwendig sind. Ändern bzw. Ersetzten ist jedoch möglich.

\Rightarrow Zuluft	Produkt	Vol.str., m3/h	Druckverlust,	Lw hinter, dB(A)
Ventilator	TYP 1-800	2950	120	7
	SR-800 1m	2950	0	7
T-Stück	TCPU-800-250	950		14
	SR-250 1m	950	0	14
T-Stück	TCPU-250-250	400		21
	SR-250 1m	400	0	21
T-Stück	TCPU-125-250	200		19
Schalldämpfer	LRCA-250-500	200	Π	12
Durchlässe	PCA-160 + MBA-1-125/160	2(Ko	mponente einfügen	33
Raum	Büro I	- Su	che SD	
		Ko	mponente entferner	<u> </u>

Schallanalyse

Betrachtung der aktuellen Schallpegel im Raum

1 Das Analysefeld befindet sich in der oberen linken Ecke des Fensters. Es wird stets aktuell angezeigt welcher Schall durch die Zuluft und die Abluft erzeugt wird und welches Resultat sich im Raum einstellt.

2 Die Raumskizze rechts neben dem Analysefeld zeigt eine Übersicht über die Anzahl der Schallquellen (gem. Vorgabe für den Raum)

3 Die Projektliste listet die Schallleistung Lw hinter jeder eingebauten Komponente auf. Diese helfen bei der Entscheidung wo ein Schalldämpfer einzusetzen ist. (Siehe nächste Seite)

Dieses Beispiel zeigt, dass die Raumvorgaben nicht eingehalten werden, bedingt durch zu hohe Schallwerte der Zuluft.

Schalldruck im Raum		[dB(A)]	🗖 Zaiga Durahlasa Auftailung
	Aktuell	Anf.	Zeige Durchlass Aurtellung
ļ	27	32	
-	23	32	
÷	0		_
Gesam	t 28	35	

Dieses Beispiel zeigt, dass die Raumvorgaben eingehalten werden.

 Wird nun ein Schalldämpfer an die bestimmte Stelle eingefügt, kann schon während der Auswahl des Schalldämpfers in der Auswahlliste das resultierende Ergebnis im Analysefeld eingesehen werden.

Hinweise zum Einfügepunkt des Schalldämpfers:

- ✓ Der Ventilator ist in der Regel die größte Schallquelle in einem Lüftungssystem. Aber auch Drosseln, Volumenstromregler, scharfkantige Einbauten etc. können durch die Eigenschallerzeugung zu Stöquellen werden, die den zulässigen Schall im Raum überschreiten lassen.
- ✓ Der Primärschalldämpfer hinter dem Ventilator/ Lüftungsgerätes ist stets zu empfehlen. Dieser kann aber aufgrund seiner Position nicht die Schallquellen im System abdämpfen.
- ✓ Folgende Vorgehensweise sucht und findet stets die notwendigen Schalldämpfer für das eingetragene System.
- Erstelle das System durch Eingabe der einzelnen Komponenten
- ✓ Benutze einen Ventilator, der in allen Frequenzen eine Schallerzeugung von 0dB hat.
- ✓ Ist der zulässige Schall im Raum überschritten?
- ✓ Wenn ja, suche einen Schalldämpfer der die notwendige Schalldämpfung erbringt und setzte diesen hinter die schallerzeugende Komponente ein (z. B. Drosselklappe). Die Schallanforderung im Raum soll nun eingehalten sein.
- ✓ Ersetze den Ventilator gegen ein Produkt mit den reellen Schallwerten.
- Ist der zulässige Schall im Raum überschritten?
- Wenn ja, suche einen Schalldämpfer f
 ür die Position hinter dem Ventilator.

Suche Schalldämpfer

- 1 Markiere die Komponente in der Projektliste hinter der der Schalldämpfer eingefügt werden soll und wähle "Suche SD". (Rechter Mausklick – Menü oder Funktionstaste)
- 2 DIMsilencer übernimmt den Volumenstrom und die Schallwerte, die vor dem Schalldämpfer herrschen und ermittelt den Soll-Schallpegel hinter dem Schalldämpfer, damit die Raumvorgaben erfüllt werden.
- 3 Unter "Anordnung nach" wird die vorstehende Komponente eingetragen. Auf Wunsch kann dieser Eintrag geändert werden.
- 4. Wähle den Kanaltyp "Rund" oder "Rechteckig" aus und bestimme den Schalldämpfertyp als Durchgangs- oder Bogenschalldämpfer.
- 5 Trage die Soll-Abmessungen a und b ein (Rechteckig) oder den Durchmesser (Rund)
- 6 Trage die max. Länge (L1) ein, die für den Schalldämpfer zur Verfügung steht.
- 7 Soll nur nach einer bestimmten Länge gesucht werden aktiviere die Box "Nur gewählte Länge suchen.". (Nur Rechteckig)

Hinweis!

Beachte bei der Eingabe der Dimensionen die Geschwindigkeit! Zu hoher Volumenstrom oder zu kleine Abmessungen führen zu einer hohen Eigenschallerzeugung.

8 Kontrolliere alle Eingaben und drücke im Anschluss auf "Suche"

> Wird kein passender Schalldämpfer für die gewählten Anforderungen gefunden erscheint folgender Hinweis:

DTURNETICEL 410	<u>×</u>	2
Keinen Schalldämpfer mit den gewünschten A	bmessungen gefunden, Zeige Alternativen	ł
[<u>]</u> a	Nein	

Ja, listet alle Schalldämpfer auf die den Abmessungen entsprechen, aber die schalltechnischen Anforderungen nicht erfüllen. Nein, ermöglicht die Eingaben zu überprüfen.

- 9 Wähle Ja
- 10 Es erscheint eine Auswahlliste. Verschiebe die Auswahlliste so auf dem Bild-

Schallwerte vor Schalldämpferauswahl

Suche des geeigneten Schalldämpfers

Schallwerte nach Schalldämpferauswahl

schirm, dass das Analysefeld eingesehen werden kann.

- 11 Markiere einen Schalldämpfer. Das Ergebnis für den Raum wird im Analysefeld sofort dargestellt. Wähle den gewünschten Schalldämpfer.
- 12 Der ausgewählte Schalldämpfer wird mit der Taste "Zur Liste hinzufügen" in die Projektliste eingefügt. "Zurück" ermöglicht es dem Nutzer die Vorgaben zu kontrollieren und zu ändern.
- 13 Zum einfügen weiterer Schalldämpfer wiederhole die Schritte 1-11.
- 14 Werden die Kriterien für den Raum erfüllt, wird das Ergebnis grün dargestellt.
- 15 Für die Schallanforderung im Raum wird unterstellt, dass der zulässige Schall zu gleichen Teilen auf Abluft und Zuluft aufgeteilt wird. Mithilfe der Funktion "Zeige Durchlass Aufteilung" kann das Verhältnis verändert werden.

🛥 🖽 🖷	B 🚯 🛞 📯 🛛	Lw: Sök ljuddä	mpare 😡 Sök	ljuddämpare
Ljudtryck Ljudtryck i 📋 Total	<pre><irummet 0="" 29="" 31="" 32="" 33="" 35<="" [db(a)]="" aktuellt="" krav="" pre="" =""></irummet></pre>	Gióm förde	elnings krav.	
\Rightarrow Tilluft	Artikel namn	Flöde, I/s	8 Ickfall, Pa	Lw efter, dB(A)
Fläkt	TF	1200	9 250	87
Ljuddämpare	DLD 600 400 1200 1	017 1200	10 📕 62	96
T-stycke	TCPU-315-200	125		91
Ljuddämpare	SLBU 315 1200 10	00 125	3	64
Spjäll	IRIS-200	125	45	64
Ljuddämpare	LRCA 200 1000	125	2	49
Don	PCA-250 + MBA-1-20	0/250 100	59	36
Lokal	Kontor	-		-

Berechnung speichern

Speichere die Berechnung im Menü Datei -> "Speichern..". ab. Der Name der Berechnung wird im oberen Fensterrand dargestellt.

Sollen mehrere Räume eines Projektes berechnet werden, ist es häufig einfacher auf eine bestehende Berechnung zuzugreifen und zu ändern, durch zufügen, entfernen oder ändern der bestehenden Komponenten.

- 1 Öffne eine bestehende Berechnung
- 2 Ändere die Daten und Komponenten auf den aktuellen Zustand.
- 3 Speichere diese durch "Speichern unter…" unter einem neuen Namen ab.

Gespeicherte Berechnung verwenden

Um bei eine frühreren Berechnung weiter zu bearbeiten.

1 Wähle im Menü Datei "Projekt öffnen"

Ausdruck

- 1 Drück auf das Drucksymbol der im Menü Datei "Drucken"
- DIMsilencer listet alle Berechnungsprotokolle der gewählten Auslegung auf.
 Die Protokolle können nun eingesehen werden.
 Hierzu sind die Zoom-Befehle sehr hilfreich.

- ³ Durch das Druckersymbol Skann der gewünschte Drucker aus den installierten Druckern gewählt werden.
- 4 Wähle den gewünschten Drucker und drücke OK.

Msilencer 5.0 - [Druckoptionen	
C Drucker		
Voransicht		
C Datei	C:\Users\Steffen\TAD\Ablage	
Format:	Adobe Acrobat (PDF)	-
nashuatec DSm62	22 (Kopierer)	<u></u>

DIMsilencer 5.0 – CADvent 6.0

Mit der neuen Version CADvent 6.0 besteht die Möglichkeit Schalldämpfer in ein bestehendes System zu integrieren ohne ein vorherige Berechnung. Bisher musste alle Schalldaten bekannt und eingegeben werden und das System musste einmal hinsichtlich des Schalls berechnet sein.

Nun habe Sie die Möglichkeit sehr einfach und schnell einen Schalldämpfer, auch ohne vorherige Berechnung einzufügen. Dazu rufen sie im CADvent Dashboard den rechten Befehl im DIMsilencer

ADvent Wahle Kon	nponente					
Gebe Schalldäm	pferpostition an			Schalldämpfer		
Umgebung			Raum		C Rechteckia	
Aussenluft		Vor 📊	Hinter Zuluft	Schalldämpfer Ty	O Bogen	
Fortluft			Abluft			
Anforderung für	Schalldämpfer			Schalldämpfer	LRBCB 💌]
Anordnung nach:				Anschluss-Ø	315 mm	
r	Lw vor Schalldämpfer	Max Dämpfung Geräusch	Lw hinter Schalldämpfer	Länge	500 💌	
63 Hz (dB)	0	5	-5			
125 Hz (dB)	0	5	-5			
250 Hz (dB)	0	7	-7			
500 Hz (dB)	0	15	-15			
1000 Hz (dB)	0	28	-28			
2000 Hz (dB)	0	19	-19			
4000 Hz (dB)	0	14	-14	III III		
8000 Hz (dB)	0	14	-14			01 0
Summe dB(A)	0	0	0		L1	I
Volumenstrom	0 m3/ł	n				_
Druckverl.:	0 Pa	Geschwindigkeit	0,0 m/s	Wähle Produkt	LRBCB 315 500	
					<u>о</u> к	Abbrechen

DIMselencer übernimmt automatisch die Dimension des Rohres oder die Abmessungen des Rechteckkanales. Jetzt können Sie analog dem Auswahlvefahren "Wähle SD" ab Seite 13 fortfahren. Bestätigen Sie Ihre getroffene Auswahl mit "OK" und fügen Sie den Schalldämpfer an der gewünschten Stelle ein.

Die zweite Möglichkeit einen Schalldämpfer einzufügen ist nach erfolgter Berechnung. Dazu rufen sie im

CADvent Dashboard den linken Befehl im DIMsilencer "Importiere aus DIMsilencer" anschließend in dem berechnten System die Leitung in der der Schalldämpfer eingebaut wedren soll. Das CADvent-DIMsilencer-Fenster Suche SD öffnet sich:

DIMsilencer 5.0 - Suche SD	
Gebe Schalldämpferpostition an Umgebung Raum	Schalldämpfer Typ
Aussenluft Vor Hinter Zuluft	Safe Anschluss
Fortluft Abluft	⊂Schalldämpferdaten
Anforderung für Schalldämpfer aus CADvent Lw vor Schalldämpfer Dämpfung Eigenschall Schalldämpfer	Anschluss-10 mm Max. äußeres Maß 0 mm
63 Hz 39 39 dB 125 Hz 44 44 dB 250 Hz 45 40 dB 500 Hz 47 43 dB 1000 Hz 51 40 dB 2000 Hz 47 42 dB 4000 Hz 44 44 dB 2000 Hz 47 42 dB 2000 Hz 44 44 dB 2000 Hz 47 42 dB 4000 Hz 44 44 dB	, 20332 mm
Summe 54 49 dB(A) Volumenstrom 500 m3/h Geschwindigkeit 2,8 m/s Druckverl.: 0 Pa	
	Suche Abbrechen

DIMselencer übernimmt automatisch die Dimension des Rohres oder die Abmessungen des Rechteckkanales, die zuvorr berechneten Schalldaten im Oktavband und den Volumenstrom.

.Jetzt können Sie analog dem Auswahlvefahren "Suche SD" ab Seite 3 fortfahren.

Im Schalldämpfer-Auswahlfeld wählen Sie den geeigneten Schalldämpfer aus und bestätigen diese Wahl durch Klick auf den "Zu CADvent überführen" Button.

che Schalldampi	fer die die n	otwendige	Dämpfun	g nicht erfü	llen!		0	ktavband	zeigen	Lw hinter		
dukt	Breite	Höhe	Länge	Preisfa	Druckve	Lw hinter, dB(A)	Eigenschall, dB(A)	63 Hz	125 Hz	250 Hz	500 Hz	1000
J 160 1200		-	1200	2,6	8	32	32	45	39	35	30	- 27 -
CA 160 500			500	1,6	6	34	32	44	39	36	32	27
50 160 280 20354	-		20354		130	32	32	44	38	34	30	27
50 160 280 20000			20000		128	32	32	44	38	34	30	27
50 160 280 18000			18000		115	32	32	44	38	34	30	27
50 160 280 15000	-		15000		96	32	32	44	38	34	30	27
60 160 280 12000	-		12000		77	32	32	44	38	34	30	27
60 160 280 9000	-		9000		58	32	32	44	38	34	30	27
0 160 280 6000	-		6000		38	32	32	44	38	34	30	27
0 160 280 3000	-		3000		19	32	32	44	38	34	30	27
0 160 280 1000		-	1000		6	33	32	44	39	35	30	27
alldämpfer Informat .U 160 1200	ion					Beschreibung						
halldämpfer Informat LU 160 1200 hforderungen Abmessu	ion ungen Bild	Beschreib	ung		Berechn	Beschreibung ung						
nalldämpfer Informat L U 160 1200 Iforderungen Abmessu	ion ungen Bild Vol	Beschreib	ung	m3/h	Berechn Geschw	Beschreibung ung ndigkeit	6,9 m/s					
nalldämpfer Informat LU 160 1200 Iforderungen Abmessu	ion ungen Bild Vol Ma	Beschreib I.str. x. Druckverlu	ung 500 : 35	m3/h Pa	Berechn Geschw Druckve	Beschreibung ung ndigkeit rl.	6,9 m/s 8 Pa					
nalldämpfer Informat LU 160 1200 Iforderungen Abmessu XXh nordnung	ion ungen Bild Vol Ma Hz	Beschreib .str. x. Druckverlu Lw vor	ung 500 : 35 Lw hinter	m3/h Pa	Berechn Geschw Druckve Hz	Beschreibung ung ndigkeit rl. Lw vor Dä	6,9 m/s 8 Pa impfung Eigensch	all L	w hinter			
halldämpfer Informat _U 160 1200 hforderungen Abmessu Ixh nordnung 2.4.4	ion ungen Bild Vol Ma Hz 63	Beschreib .str. x. Druckverlu Lw vor 38	ung 500 : 35 Lw hinter 38	m3/h Pa	Berechn Geschw Druckve Hz 63	Beschreibung ung ndigkeit rl. Lw vor Dä	6,9 m/s 8 Pa impfung Eigensch 2 44	iali L	w hinter 45 dB			
nalldämpfer Informat LU 160 1200 Iforderungen Abmessu I x h nordnung Zuluft	ion Ungen Bild Vol Ma Hz 63 125	Beschreib .str. x. Druckverlu Lw vor 38 39	ung 500 : 35 Lw hinter 38 39	m3/h Pa dB dB	Berechn Geschw Druckve Hz 63 125	Beschreibung ung ndigkeit rl. Lw vor Dä 38	6,9 m/s 8 Pa mpfung Eigensch 2 44 6 38	ial L	w hinter 45 dB 39 dB			
alldämpfer Informat LU 160 1200 Iforderungen Abmessu Ish nordnung Zuluft	ion Vol Ma Hz 63 125 250	Beschreib .str. x. Druckverlu Lw vor 39 41	ung 500 : 35 Lw hinter 38 39 41	m3/h Pa dB dB dB	Berechn Geschw Druckve Hz 63 125 250	Beschreibung ndigkeit rl. Lw vor Dä	6,9 m/s 8 Pa impfung Eigensch 2 44 15 38	ial L	w hinter 45 dB 39 dB 35 dB			
nalldämpfer Informat LU 160 1200 Iforderungen Abmessu Ixh nordnung Zuluft	ion Vol Hz 63 125 250 500	Beschreib .str. x. Druckverlu Lw vor 38 39 41 45	ung 500 35 Lw hinter 38 39 41 45	m3/h Pa dB dB dB dB dB	Berechn Geschw Druckve Hz 63 125 250 500	Beschreibung ung ndigkeit rl. Lw vor Dä 38 39 41 45	6,9 m/s 8 Pa impfung Eigensch 2 44 6 38 15 30	iali L	w hinter 45 dB 39 dB 35 dB 35 dB 30 dB			
halldämpfer Informat LU 160 1200 nforderungen Abmessu Xxh nordnung Zuluft	ion Vol Hz 63 125 250 500 1000	Beschreib Istr. x. Druckverlu Lw vor 38 39 41 45 37	ung 500 35 Lw hinter 38 39 41 45 37	m3/h Pa dB dB dB dB dB dB dB	Berechn Geschw Druckve Hz 63 125 250 500 1000	Beschreibung ung ndigkeit rl. Lw vor Dä 38 39 41 45 37	6,9 m/s 6,9 Pa mpfung Eigensch 2 44 6 38 15 34 35 32 50 27	ali L	w hinter 45 dB 39 dB 35 dB 30 dB 30 dB 27 dB			
halldämpfer Informat LU 160 1200 nforderungen Abmessu Xxh nordnung Zuluft	ion Vol Ma Hz 63 125 250 500 1000 2000	Beschreib str. x. Druckverlu Lw vor 38 39 41 45 37 34	ung 500 35 Lw hinter 38 39 41 45 37 37 34	m3/h Pa dB dB dB dB dB dB dB dB dB	Berechn Geschw Druckve Hz 63 125 250 500 1000 2000	Beschreibung ung ndigkeit rl. Lw vor Dä 38 39 41 45 37 34	6,9 m/s 6,9 Pa mpfung Eigensch 2 44 6 38 15 34 35 30 50 27 50 9	iali L	w hinter 45 dB 39 dB 35 dB 30 dB 27 dB 9 dB		Druck	en
halldämpfer Informat LU 160 1200 Inforderungen Abmessu Vix h nordnung Zuluft	ion Vol Ma Hz 63 125 250 500 1000 2000 4000	Beschreib .str. x. Druckverlu Lw vor 38 39 41 45 37 34 35	ung 500 35 Lw hinter 38 39 41 45 37 34 35	m3/h Pa dB dB dB dB dB dB dB dB dB dB	Berechn Geschw Druckve Hz 63 125 250 500 1000 2000 4000	Beschreibung ndigkeit rl. Lw vor Dä 38 39 41 45 37 37 34 35	6,9 m/s 8 Pa impfung Eigensch 2 44 6 38 15 34 35 30 50 27 50 9 30 4	iali L	w hinter 45 dB 39 dB 35 dB 30 dB 27 dB 27 dB 8 dB		Druck	en
halldämpfer Informat _U 160 1200 nforderungen Abmessu #xh .nordnung Zuluft	ion Ungen Bild Vol Ma Hz 63 125 250 500 1000 2000 4000 8000	Beschreib .str. x. Druckverlu Lw vor 38 39 41 45 37 34 35 25	ung 500 35 Lw hinter 38 39 41 45 37 37 34 35 25	m3/h Pa dB dB dB dB dB dB dB dB dB dB dB dB	Berechn Geschw Druckve Hz 63 125 250 500 1000 2000 4000 8000	Beschreibung ndigkeit rl. Lw vor Dä 38 39 41 45 37 34 35 25	6,9 m/s 6,9 m/s 8 Pa mpfung Eigensch 2 44 6 38 15 34 35 30 50 27 50 9 30 4 17 -4	iali L	w hinter 45 dB 39 dB 35 dB 30 dB 27 dB 27 dB 8 dB 8 dB		Druck	en
halldämpfer Informat LU 160 1200 Inforderungen Abmessu w x h Anordnung Zuluft	ion Ungen Bild Vol Ma Hz 63 125 250 500 1000 2000 4000 8000	Beschreib .str. x. Druckverlu Lw vor 38 39 41 45 37 34 35 25	ung 500 35 Lw hinter 38 39 41 45 37 34 35 25	m3/h Pa dB dB dB dB dB dB dB dB dB dB dB	Berechn Geschw Druckve Hz 63 125 250 500 1000 2000 4000 8000 Summe	Beschreibung ndigkeit rl. Lw vor Dä 38 39 41 45 37 34 35 25 45	6,9 m/s 6,9 m/s 8 Pa implung Eigensch 2 44 6 38 15 34 35 30 50 27 50 9 30 4 17 4	all L	w hinter 45 dB 39 dB 35 dB 30 dB 27 dB 8 dB 8 dB 8 dB 8 dB		Druck CAD vent i	en

Anschließend plazieren Sie im CADvent den Schalldämpfer an die gewünschte Stelle.