

lindab | we simplify construction

Lindab UltraLink

Bluetooth[®]

Mobile application User manual

lindab ultraLink | mobile app

Mobile application Contents

tabl	e of	conte	nts
------	------	-------	-----

lindab ultraLink | mobile app

Get the app from <u>App Store</u> or <u>Google Play</u>

O SCAN 2.1. settings

Open the application and ensure that the Bluetooth connection on your device is switched on.

Verify that the app has the correct permissions according to the following.

Android*

Go to the mobile's settings.

Click on Apps & Notifications

Apps & notifications Recent apps, default apps

Click on see all apps.

Scroll down to the Ultra-Link-app in the list.

iOS

Go to the mobile's settings.

Scroll down to the UltraLink app in the list. Allow UltraLink to access Bluetooth.

ALLOW ULTRALINK TO ACCESS

Allow Location while app is in use.

* May vary depending on model.

Press the **Scan** button.

The application will search for Ultralink Bluetooth devices

Bluetooth signal strength
 Unit numeral
 Flow
 Temperature

Press the **Stop Scan** button to stop the search. A blue **Connect** text for the devices will be displayed.

Select the desired device by pressing the **Connect** text. The devices can be given an individual unit numeral, as default this is the Modbus ID.

46 Beep Connect Temp: 0,00 C

The signal strength displayed on the left of the display shows how close the device is. However, the signal reflections in a building determine the order in which the devices will appear on the display.

Pincode

Enter pincode to get access. Attempts left: 5

When one device has been selected, the application asks for a **PIN code**. It is factory set as **1111**. Enter it into the field and press the **OK** button.

lindab ultraLink | mobile app

When you press the **Beep** button, the FTCU will give an audio signal that will enable you to check which device you are connected to. The device's **blue LED light** flashes rapidly when the connection is established.

The device's serial number can be found on the data plate. The last three digits are the device's Modbus address. In this example, the Modbus address is 071.

You can also find the Modbus address (ID number) in the device display by using the button.

The application functions are divided into five tabs

Scan Search for devices

Device

Details about the device found

Config Control settings of the device found

Measure

Measured values of the device found

Support

Links to contact details and technical information

7

The device's serial number is displayed on the application's **Device** tab.

You may need to wait a few seconds while the connection is being established (Receiving).

In this case, the serial number is 27154 and the Modbus address is 154.

On this tab, you can change the Modbus settings, the PIN code and the device name (Device designation).

Make a change by pressing the blue Set button.

Device information

Sorial number

Serial number:	27154		Serial number
Nominal size:	250		Device size
Parameter version:	325		Database version
Pincode	1111	Set	PIN code
Communication			
Protocol:	Modbus/	Set	Communication protocol
Baud rate:	19200	Set	Baud rate
Parity	Odd	Set	Parity
Stop bit:	1	Set	Stop bit
Modbus address:	154	Set	Modbus address
PLA:	154	Set	PASCAL address PLA
ELA:	154	Set	PASCAL address ELA

Continued on the next page >>

return to table of contents

device |

Device designation:

UltraLink 9988

Set

The **Device designation** that is displayed on the Scan page can be changed by clicking the **Set** button.

•	e parameter In the new paramete	
Reception exhaust		
OK	Cancel	

You can name the UltraLink with letters and special characters such as the example above. If the UltraLink has older firmware, you can only use four digits to identify the UltraLink.

Flow disturbance settings

UltraLink can be installed close (<5 Ød) to a bend or reducer and have 5% measurement uncertainty, if the **Type of disturbance** and **Distance from disturbance** corrections is set in the app. If not, the measurement uncertainty will be much higher.

Flow correction

 Type of disturbance
 None
 Set

 Distance from disturban...
 90
 Set

 Olick on the Set button next to Type of disturbance. Chose the type of disturbance out of the three choices.
 Type of disturbance

 Image: Chose the type of disturbance out of the three choices.
 Image: Chose the type of disturbance

DEVICE 3.1. settings

Click on the Set button next to Distance from disturbance. Enter the distance from stop beads of the disturbance and the UltraLink according to the picture. Click OK, the function is now active.

To turn off the function, press **Set** button for **Type of disturbance** and then chose **Cancel**. The text now says **None** and flow correction is disabled.

Flow correction

Type of disturbance

1

It is possible to insert a custom correction factor if you want to adjust the flow. Clicking on the **Set** button after **Manual correction factor** enables you to insert a factor that modifies the flow. For example, an input of 1,1 increases the flow displayed by 10%.

Manual correction factor

Set

You can also execute the calibration of the damper's position (Angle recalibration), restart the device (Reboot) and reset the device to factory defaults (Reset device). The Reset device password is Lindab.

Angle recalibration

Calibration of the damper's position Execute Start by pressing Execute Reset device **Device restart** Start by pressing Reboot Reboot **Device reset to factory defaults** Reset device Start by pressing Reset device

The device's control settings can be found on the **Config** tab.

Control

Flow

Control by:

Analog In

Set

Flow rate setpoint (l/s):

0

First, check the **Control / Controlled variable** and ensure that the device's control parameter is the desired one: **Flow** (setpoint is an airflow) or **Damper** (setpoint is a damper angle).

Next, check the control method under **Control by**: **Analog In** = control by voltage signal, **Serial** = Modbus bus control.

If the desired control method is Modbus use the **Set** button to switch to Control by: Serial

Control		
Controlled variable:		
Flow	Set	Control parameter
Control by:		
Serial	Set	Control method
Flow rate setpoint (l/s):		
60	Set	Setpoint

Settings of control by bus

Max. flow rate setpoint (bus):

736	Set	Max. setpoint flow
Min. flow rate setpoint (bus):		
0	Set	Min. setpoint flow
Max. damper position rate setpoint (bus):		
100	Set	Max. setpoint damper angle
Min. damper position rate setpoint (bus):		
0	Set	Min. setpoint damper angle
Damper override timeout:		
120	Set	Time for override in minutes
Override function:		
4	Set	Override*

Start Override: Execute

*Alternatives for override

- O = Normal function
- 1 = Max. airflow
- 2 = Min. airflow
- 3 = Damper 100% open
- 4 = Damper closed

If the desired control method is Analog In, use the **Set** button to switch to Control by: Analog In

Control		
Controlled variable:		
Flow	Set	Control parameter
Control by:		
Analog In	Set	Control method
Flow rate setpoint (l/s):		
12	Set	Setpoint

If the control method is Analog In (voltage signal), ensure that the control method is selected and check the other settings. Make the necessary changes. It is important that the device and the building management system (voltage range and airflows) are on the same scale.

Airflow factory defaults

Device size	Max flow rate setpoint (7m/s)
Ø [mm]	l/s
100	55
125	86
160	141
200	220
250	344
315	546
400	880
500	1374
630	2182

Min flow rate = 0 l/s

If you want to define Min and Max airflows on the device, it should be done here:

Settings of control by analog input (Aln)

Max. flow rate setpoint:

344	Set
Min. flow rate setpoint:	
0	Set
Max. damper position rate setpoint:	
100	Set
Min. damper position rate setpoint:	
0	Set
Voltage range:	
2 - 10 V	Set

Analog In override: 0.1 to 1.9V:

0,5

The control voltage type is set as factory default 2–10 V 2 V = Min flow rate setpoint (factory default 0 l/s) 10 V = Max flow rate setpoint (factory default 7 m/s air speed, airflows based on specific dimensions)

Set

0 V = Damper will be force closed

If the control method is 2-10 V, a voltage range for override control can be set within 0.1-1.9 V (Analog In override: 0.1-1.9 V). The factory default is 0.5 (0-0.5 V = closed).

If the control method is 0-10 V:

0 V = Min. flow rate setpoint, 10 V = Max. flow rate setpoint

CONFIG 4.5. Analog settings

Settings for AO analog outputs (feedback signals). Your device has two outputs, AO1 and AO2

Below are the factory defaults.

Settings of analog output (AC	01)
Variable:	
Flow rate	Set
Maximum value:	
344	Set
Minimum value:	
0	Set
Voltage range:	
2 - 10 V	Set

Settings of analog output (AO2)	
Variable:	
Damper position	Set
Maximum value:	
100	Set
Minimum value:	
0	Set
Voltage range:	
2 - 10 V	Set

Check that the return signals are in the desired form and scale. Return signal (Variable) can be flow rate, temperature or damper position. The airflow factory default Maximum value depends on the device size (7 m/s duct speed as factory default).

Measured results can be found on the **Measure tab.**

		А	В	
Flow rate setpoint	٦.,	0		Setpoint Voltage signal AIN or
60	l/s	\bigcirc	\bigcirc	MODBUS bus
Flow rate				
60,607	l/s	O	\bigcirc	Airflow measured value
Velocity				
1,234	m/s	\bigcirc	\bigcirc	Duct speed measured value
Temperature				
20,5	С	\bigcirc	\bigcirc	Air temperature measured valu
Damper position:				
28,5	%	\bigcirc	\bigcirc	Damper position
Analog input voltage	e			
0	V	\bigcirc	\bigcirc	AIN value
Analog output 1 volt	age			AO1 value
3,41	V	\bigcirc	\bigcirc	AUTVAIUE
Analog output 2 voltage		AO2 value		
4,28	V	\bigcirc	\bigcirc	
Graph interval				
1	s	Set		
		You can s	elect parar	neters for
		the curves	s by using t	the A and

Measured results can be found on the Measure tab.

FAQ 6.1. Troubleshooting

Troubleshooting and solutions MODBUS

The device does not regulate, the damper is closed, the damper is 100% - check the device's setpoint, make sure it is not 0.

- check the device's min. and max. settings for flow and damper angle, see page 11 for digital or page 13 for analog settings.

- ensure that the bus settings are correct (baud rate, stop bit, parity)

- if connections have been made to the bus cables with the device powered on, or if there have been interferences in the supply voltage, the device may be in failure mode. Reboot the device.

Troubleshooting and solutions, Analog In voltage control

The device does not regulate, the damper is closed, or the airflow is 0 l/s - the control voltage is 0 V and the control method on the device is 2-10 V (0V=closed)

- the control voltage is 2 V and the control method on the device is 2-10 V (2V=0I/s)

The damper position information is incorrect (usually 0%) or there is an error 1 or error 2 on the device

The device reads the damper position from the end of the axis using a magnet. If the magnet momentarily loses contact during the installation, the position information may be lost.

If the damper position is incorrect, carry out the calibration from the Device tab. The calibration cycle will take approximately 3-5 min. The device goes to both its limits. In some cases, the product can remain shut after calibration cycle is complete and the 5 minutes has passed. In this case, press Reboot and check on the Measure tab that the device finds the damper position. In rare cases, the device may need another calibration cycle.

Error 3 on the device display (set value is not reached)

Check the damper position. If it is fully open (100%), there is not enough pressure in the duct.

Error 4 on the device display (measurement error)

Reboot the device. If the device's measured airflow and temperature values are zero, check that the sensors are in place. If the sensors are in place, the sensors or cables are damaged, and the device must be replaced.

PRODUCT SUPPORT

Contact details

XX

Name

Phonenumer

email

XX

Name

- Phonenumer
- email

return to table of contents **PRODUCT SUPPORT** | 19

Good Thinking

At Lindab, good thinking is a philosophy that guides us in everything we do. We have made it our mission to create a healthy indoor climate – and to simplify the construction of sustainable buildings. We do that by designing innovative products and solutions that are easy to use, as well as offering efficient availability and logistics. We are also working on ways to reduce our impact on our environment and climate. We do that by developing methods to produce our solutions using a minimum of energy and natural resources, and by reducing negative effects on the environment. We use steel in our products. It's one of few materials that can be recycled an infinite number of times without losing any of its properties. That means less carbon emissions in nature and less energy wasted.

We simplify construction

www.lindab.com