
RS14, angepasst an Deckentyp Markant.

Deckendurchlässe für Mischlüftung

Durchlässe	Тур	Funktionen	Seite
0	PS1		195
	PS8		205
	RS14		213
	RS15		227
0	RS16		239
	NS19		247
0	GS23		255

Lindab Versio eine Serie mit an Decken angepassten Deckendurchlässen

RS15, CMC Biopharmaceuticals A/S, Søborg.

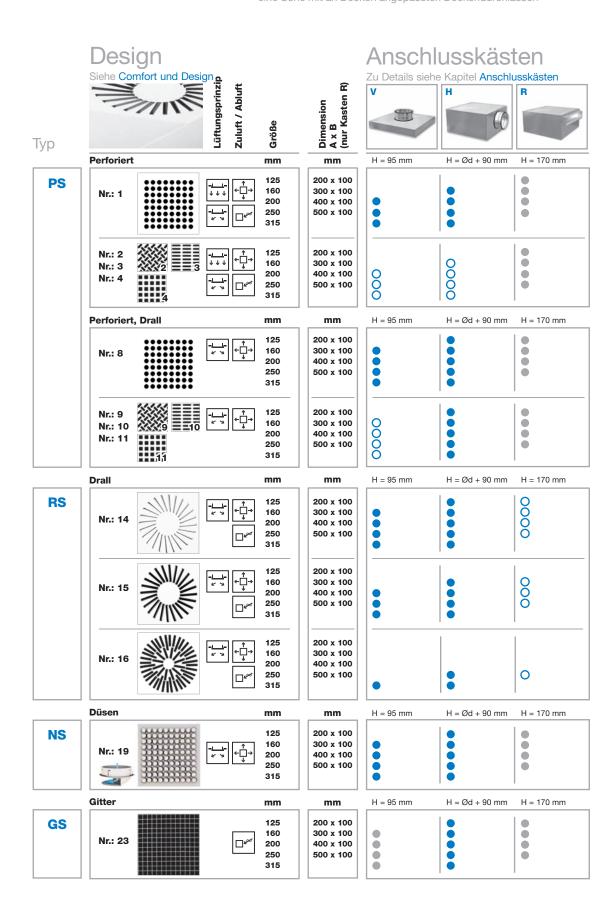
Lindab Versio

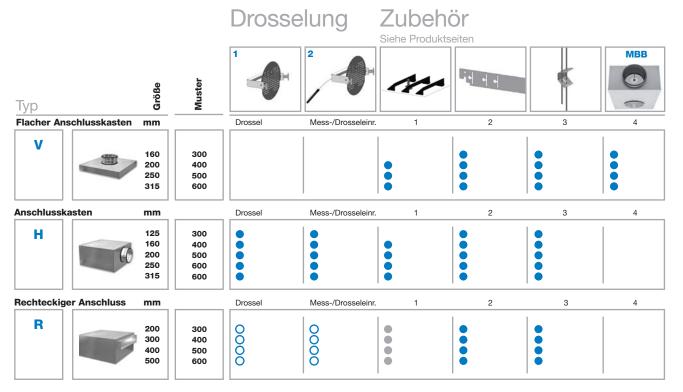
Lindab Versio ist eine Serie mit quadratischen Deckendurchlässen für Zu- und Abluft, die an Systemdecken angepasst sind.

Versio bietet, wie der Name andeutet, eine Vielzahl von Möglichkeiten für den Bau eines Durchlasses, der spezifische Anforderungen erfüllt. Eine große Auswahl von Frontplatten mit verschiedenen Designs erfüllt sowohl gestalterische als auch funktionale Anforderungen. Unterschiedliche Arten von Anschlusskästen gewährleisten, dass jederzeit der Anschluss des Luftführungssystems möglich ist und die Durchlässe gleichzeitig einzeln geregelt werden können.

Versio kann an die meisten Deckensysteme angepasst werden. So fügt sich der Durchlass auf natürliche Weise in die Deckenumgebung ein und gewährleistet eine einfache Montage, was wiederum den Einbau direkt auf der Baustelle erleichtert.

Einzigartige Flexibilität


Versio bietet eine einzigartige Entscheidungsfreiheit und Flexibilität. Der fertig konfigurierte Durchlass ist einfach einzubauen und wird an das jeweilige Deckensystem angepasst geliefert.


NS19 mit Anschlusskasten Typ H.

eine Serie mit an Decken angepassten Deckendurchlässen

eine Serie mit an Decken angepassten Deckendurchlässen

Zubehör:

- 1. Luftverteiler MDR (nur PS1-4)
- 2. Montageschienen PBB
- 3. Schnellspannhänger MHS
- 4. Anschlusskasten Typ MBB
- 1. Produkt und technische Daten im Katalog.
- O 2. Kombination möglich. Technische Daten im Katalog.
- 3. Kombination möglich. Technische Daten nicht im Katalog abgebildet.
 - 4. Wenn kein Symbol angegeben ist, ist eine Kombination nicht möglich.

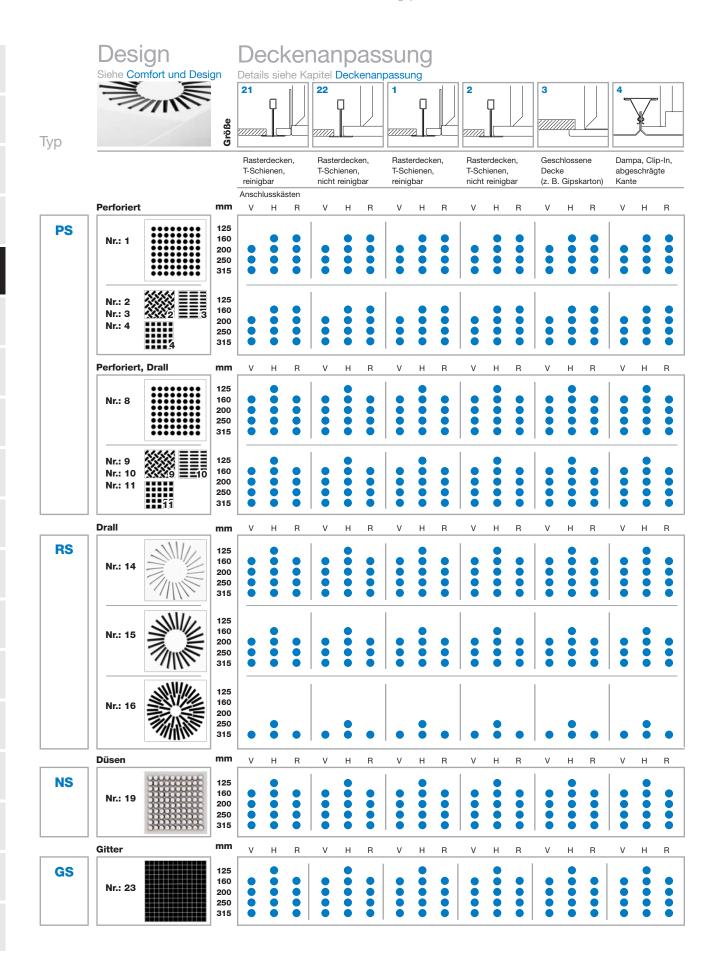
Anleitung für die Auswahl von Durchlässen

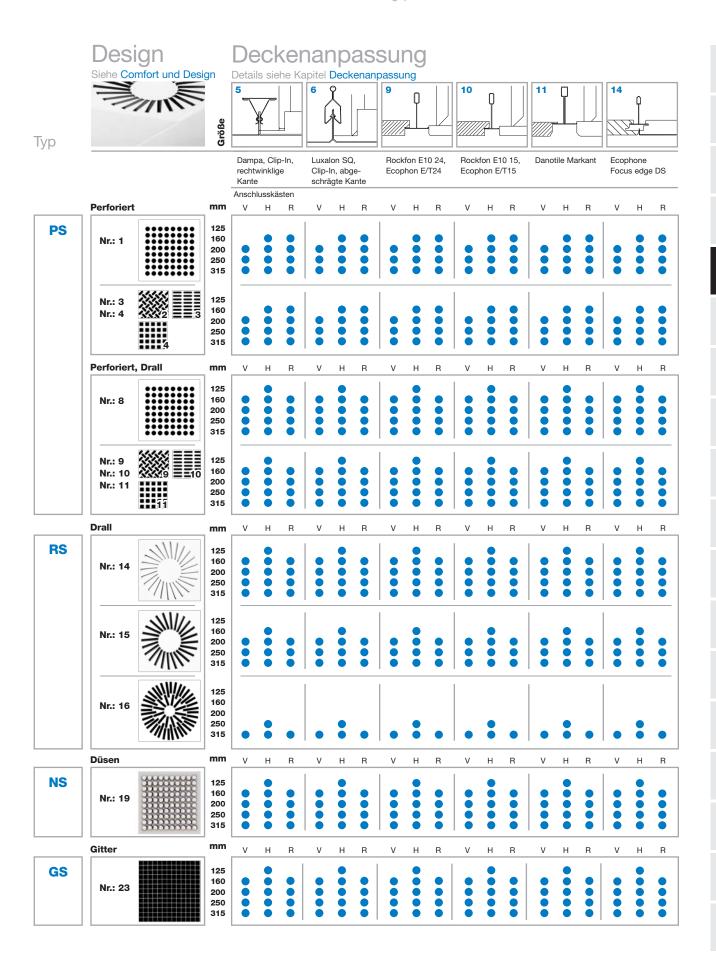
(siehe Kapitel Produktübersicht und Symbole)

- 1. Beginnen Sie mit der Produkt(Typ)- und Designauswahl, die auf Funktion und Design basiert, z. B. PS1 oder RS14. Das Design ist nummeriert und im Kapitel "Comfort und Design" beschrieben.
- 2. Es können verschiedene Typen von Anschlusskästen gewählt werden: z. B. Anschlusskasten mit horizontalem, runden Anschlussstutzen (H).
- 3. Es können verschiedene Arten der Lufteinbringung oder Abluft gewählt werden: z. B. Zuluft (S).
- 4. Es kann optional eine Mess-/Drosseleinrichtung gewählt werden: z. B. mit Mess-/Drosseleinrichtung (2).
- 5. Die Anschlussgröße wird festgelegt: z. B. 200 mm.
- **6.** Schließlich wird angegeben an welchen Typ von Deckensystem der Durchlass angepasst werden soll. Im Kapitel "Deckenanpassung" sind die Deckensysteme nummeriert und ausführlich beschrieben: z. B. Rasterdecke, 625 mm mit herausnehmbarer Frontplatte (21).

Bestellbeispiel Versio + Anschlusskasten

Quadratischer Deckendralldurchlass mit feststehenden Lamellen. Integrierter Anschlusskasten mit horizontalem Anschluss im Durchmesser Ø200 mm. Der Durchlass ist mit einer Mess- /Drosseleinrichtung ausgestattet. Er soll in eine Rasterdecke (T-Schiene) eingelegt werden und eine nach unten herausnehmbare Frontplatte haben.




Im Beispiel bestellter Durchlass

Control | Contro

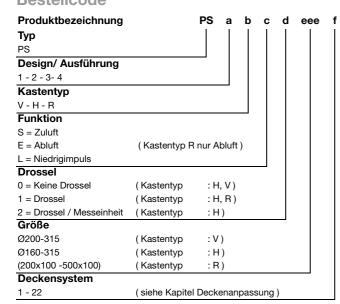
eine Serie mit an Decken angepassten Deckendurchlässen

eine Serie mit an Decken angepassten Deckendurchlässen

Lindab Versio eine Serie mit an Decken angepassten Deckendurchlässen

NS19.

PS₁

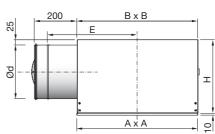

PS1 mit Anschlusskasten Typ V

Beschreibung

PS1 ist ein quadratischer Deckendurchlass mit perforierter Frontplatte für Zu- und Abluft. Der Durchlass kann auch als Niedrigimpulsdurchlass eingesetzt werden und ist besonders bei hohen Luftwechselraten oder starker Wärmebelastung geeignet.

- Zu- und Abluft
- 1-, 2- oder 3-seitige Strahlausbreitung
- Kann für Niedrigimpuls verwendet werden

Bestellcode



Beispiel: PS-1-V-S-0-200-1

PS1 mit Anschlusskasten Typ H

Dimensionen

PS1-H		Α	В	Н	E	Gewicht
Ød	Muster	mm	mm	mm	mm	kg
160	400	*-	380	250	350	5,9
200	500	*_	460	290	390	8.50
250	600	*_	560	340	420	12.3
315	600	*_	560	405	420	13.1

* Die Abmessung A x A der Frontplatte hängt vom Deckensystem ab. Genauere Informationen zu den Abmessungen erhalten Sie unter "Deckenanpassung". Weitere Informationen zu Anschlusskästen erhalten Sie unter "Anschlusskästen".

Wartung

Zur Reinigung der internen Komponenten oder für den Zugang zum Kanal oder Anschlusskasten kann die Frontplatte entfernt werden. Die sichtbaren Teile des Durchlasses können mit einem feuchten Tuch abgewischt werden.

Material und Ausführung

Anschlusskasten:

Material: Verzinkter Stahl

Frontplatte:

Material: Verzinkter Stahl
Standardausführung: Pulverbeschichtet
Standardfarbe: RAL 9010 weiß

Der Durchlass ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

4

5

7

8

PS₁

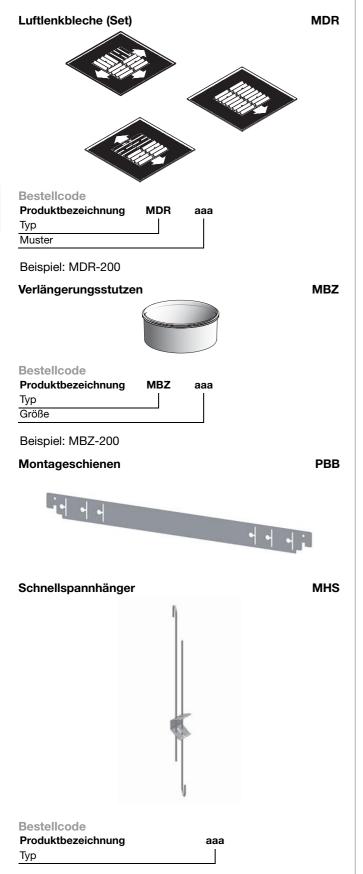
Zubehör

__

5

6

11

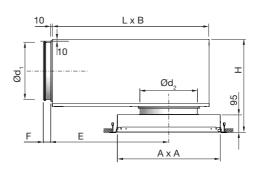

12

14

15

47

18



Anschlusskasten

MBB

PS1-V + MBB

PS1-V	+ MBB						
Rohr	Rohr PS1-V		В	E	F	Н*	L
Ød ₁ mm	$Ød_2$ mm	Muster	mm	mm	mm	mm	mm
125	200	400	310	262	50	280 - 320	376
160	200	400	380	323	50	314 - 354	459
160	250	500	380	323	50	314 - 354	459
200	200	400	460	396	70	355 - 395	565
200	250	500	460	396	70	355 - 395	565
200	315	600	460	396	70	355 - 395	565
250	250	500	540	486	70	405 - 445	698
250	315	600	540	486	70	405 - 445	698
315	315	600	540	646	70	470 - 510	858

* Bei Verwendung mit MBZ wird H länger bei:

 $\emptyset d_2 = 200 \text{ mm} => H + 40 \text{ mm}$ $\emptyset d_2 = 250 - 315 \text{ mm} => H + 60 \text{ mm}$

Bestellcode

Produktbezeichnung	MBB	aaa	bbb	С
Тур	1			
MBB				
Rohranschluss Ød ₁				
Ø125-315				
Durchlassgröße Ød ₂				
Ø200-315				
Funktion				
S = Zuluft				
E = Abluft				

Beispiel: PS-1-V-S-0-200-1+MBB-200-200-S

Beispiel: MHS

PS1

Technische Daten

Leistung

Die Diagramme zeigen den Gesamtdruckverlust Δp_t [Pa], Wurfweite I_{02} [m] sowie Schallleistungspegel I_{WA} [dB(A)] als Funktion des Volumenstromes I_{VA} [l/s, m³/h].

Frequenzabhängiger Schallleistungspegel

Der Schallleistungspegel im Frequenzbereich wird durch L_{WA} + K_{ok} definiert. Die Werte für K_{ok} werden in Tabellen unter den folgenden Diagrammen angegeben.

Schnellauswahl, Zuluft

PS1-V + MBB

PS1-V	+ MBB	∆p _t ≥	50 Pa	$\Delta p_t \ge$	50 Pa
Rohr	Rohr PS1-V		B(A)	35 c	iB(A)
Ød ₁	$\emptyset d_2$	l/s	m³/h	l/s	m³/h
125	200	58	209	70	252
160	200	63	227	77	277
160	250	71	256	90	324
200	200	82	295	97	349
200	250	88	317	108	389
200	315	108	389	139	500
250	250	106	382	124	446
250	315	124	446	150	540
315	315	152	547	183	659

Zuluft

PS1 + H

PS1 + H			$\Delta p_t \ge$	50 Pa	$\Delta p_t \ge$	50 Pa
Größe Ød	Mini	imum	30 c	dB(A)	35 dB(A)	
mm	l/s	m³/h	l/s	m³/h	l/s	m³/h
160	30	108	51	184	57	205
200	49	176	69	248	83	299
250	49	176	93	335	114	410
315	82	295	140	504	164	590

Eigendämpfung

Eigendämpfung der Durchlässe ΔL zwischen Rohr-/Kanalsystem und Raum, einschließlich Mündungsreflexion.

PS1-V + MBB

PS1-V	+ MBB								
Rohr	PS1-V		Mittelfrequenz Hz						
Ød ₁	$\emptyset d_2$	63	125	250	500	1K	2K	4K	8K
125	200	14	11	4	15	15	15	16	17
160	200	14	14	7	22	18	17	19	20
160	250	14	14	4	17	15	15	16	19
200	200	13	10	7	16	19	17	19	18
200	250	11	9	6	15	17	15	18	16
200	315	13	8	3	12	16	14	16	15
250	250	14	8	8	16	18	17	17	18
250	315	14	7	5	14	16	15	16	17
315	315	8	9	9	15	17	16	17	21

PS1 + H

PS1 + H										
Größe Ød		Mittelfrequenz Hz								
mm	63	125	250	500	1K	2K	4K	8K		
160	18	15	5	13	11	11	9	10		
200	16	10	6	15	11	11	12	14		
250	14	9	7	13	8	9	12	14		
315	12	8	8	14	10	9	11	14		

Einregulierung und Montage

Für weitere Information siehe www.lindab.de und Montageund Einregulierungsanweisung.

Lindab®

2

3

5

7

10

11

12

1.3

1 /1

15

16

17

PS₁

1

2

3

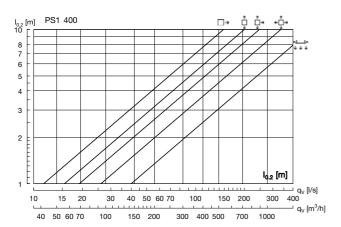
5

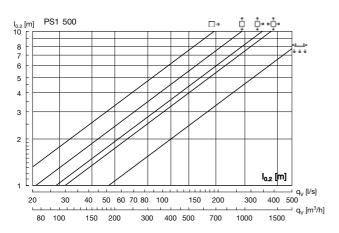
0

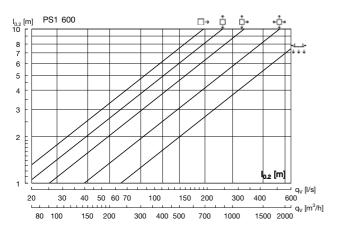
10

40

14

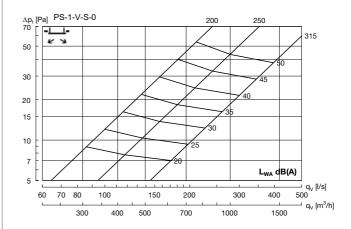

15

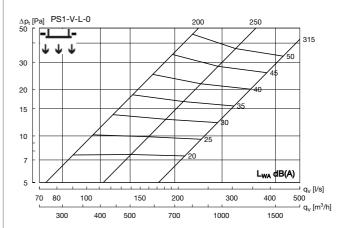

4 0


Technische Daten

Wurfweite I_{0.2}

Die Wurfweite $I_{0,2}$ [m] wird bei einer Endgeschwindigkeit von 0,2 m/s angegeben.

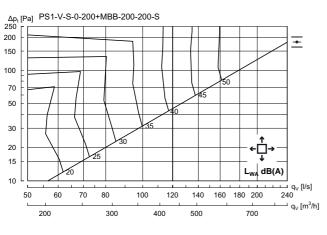


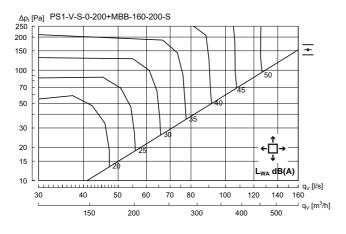


PS1-V ohne Anschlusskasten Typ MBB

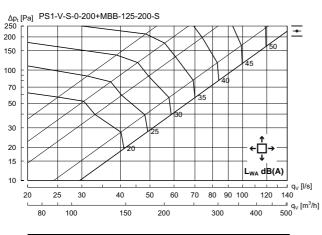
Zuluft

Niedrigimpuls


Für den Einsatz bei Niedrigimpuls siehe zusätzliche Planungsanleitung im Kapitel 12 "Niedrigimpulslüftung".


PS₁

Technische Daten


PS1-V 200 + MBB - Zuluft

Hz	63	125	250	500	1K	2K	4K	8K
Kok	13	0	-6	0	-4	-17	-25	-32

Hz								
K _{ok}	8	3	-3	-1	-4	-14	-21	-27

			250	500	1K	2K	4K	8K
K _{ok}	9	5	1	-2	-6	-10	-15	-22

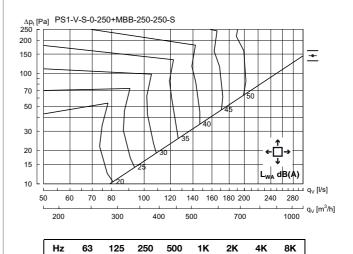
PS1-V 250 + MBB - Zuluft

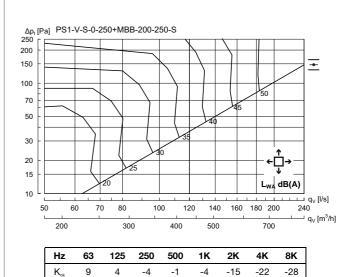
K_o

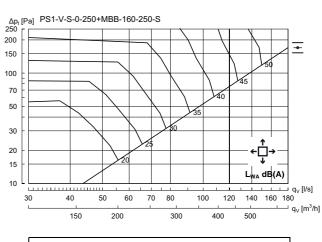
10

-1

-6


0


-4


-18

-25

-33

63 125 250 500 1K 2K 4K 8K Hz 15 3 -1 -3 -12 -19 -24

Lindab®

1

2

3

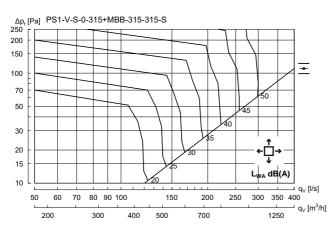
7

_

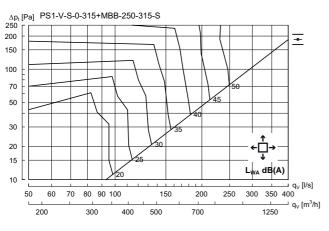
10

15

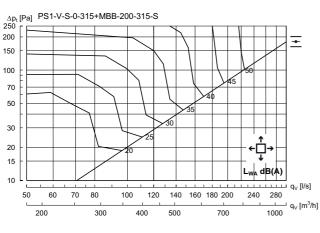
4.0


1 /

3 [


PS₁

Technische Daten


PS1-V 315 + MBB - Zuluft

Hz	63	125	250	500	1K	2K	4K	8K
Kok	12	0	-3	-1	-4	-16	-22	-28

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	9	4	-3	-1	-4	-15	-22	-28

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	10	5	-1	-2	-4	-12	-19	-25

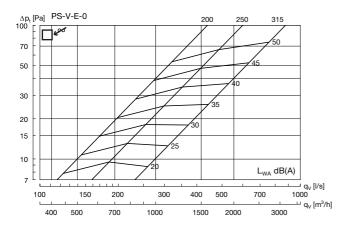
Niedrigimpuls; Korrekturfaktor für Schallleistungspegel (L_{WA}) und Gesamtdruckverlust (△p_t)

Auf den vorigen Seiten können Sie Diagramme für Zuluft aller Größen von PS1-V+MBB finden. Für Niedrigimpuls verwenden Sie die Korrekturfaktoren in der nachstehenden Tabelle.

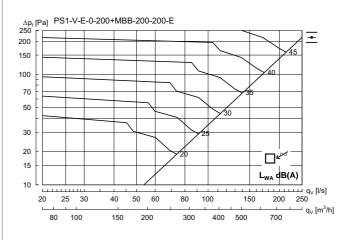
PS1-V + MBB

PS1-V	+ MBB	Niedrig	gimpuls
Rohr	PS1-V	Korrekt	urfaktor
Ød ₁	$\emptyset d_2$	L _{WA}	Δp_t
125	200	-1	x 1
160	200	-2	x 0,9
160	250	0	x 1
200	200	-3	x0,9
200	250	0	x 1
200	315	0	x 1
250	250	0	x 1
250	315	0	x 1
315	315	0	x 1

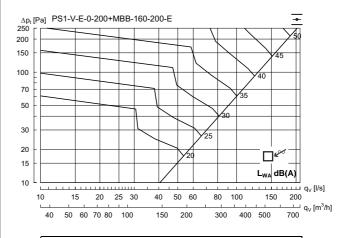
Für den Einsatz bei Niedrigimpuls siehe zusätzliche Planungsanleitung im Kapitel 12 "Niedrigimpulslüftung".

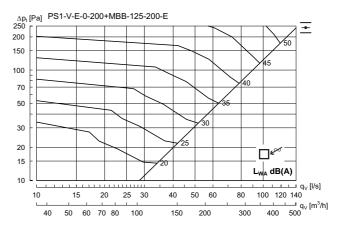


PS₁


Technische Daten

PS1-V ohne Anschlusskasten Typ MBB


Abluft


PS1-V 200 + MBB - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	15	5	1	-3	-6	-10	-14	-23

Hz	63	125	250	500	1K	2K	4K	8K
Kok	16	6	0	-3	-7	-9	-15	-21

Hz			250	500	1K	2K	4K	8K
K _{ok}	10	4	2	-2	-6	-10	-15	-22

1

2

5

_

8

4 0

11

12

13

14

15

16

17

PS₁

1

2

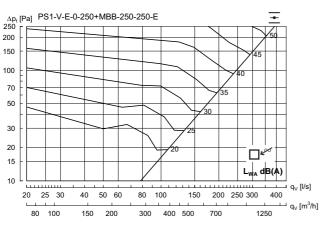
5

_

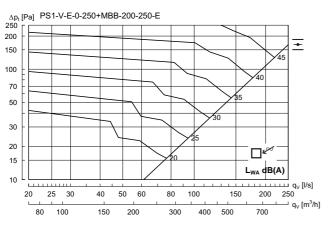
10

13

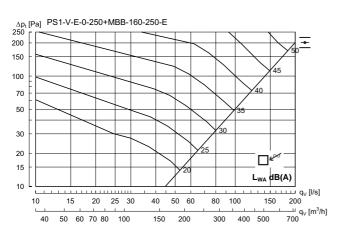
4 E


16

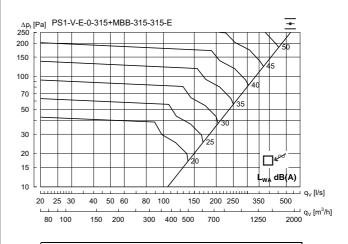
17


18

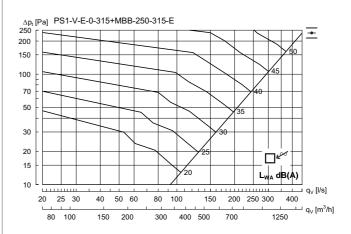
Technische Daten


PS1-V 250 + MBB - Abluft

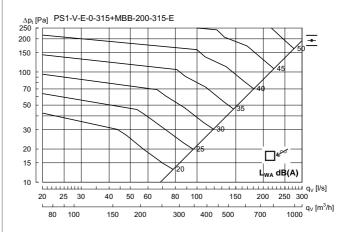
Hz	63	125	250	500	1K	2K	4K	8K
Kok	10	6	2	-3	-6	-10	-15	-23



Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	14	5	1	-3	-5	-10	-15	-22



Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	15	6	0	-3	-6	-9	-14	-21


PS1-V 315 + MBB - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	5	3	-3	-7	-10	-15	-26

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	5	2	-3	-6	-11	-16	-23

03	125	250	500	IN	2K	4N	or
13	5	1	-3	-6	-10	-14	-22
	13	13 5	13 5 1	63 125 250 500 13 5 1 -3	13 5 1 -3 -6		

PS₁

Technische Daten

PS1+H - Zuluft

 K_{ok}

 K_{ok}

9

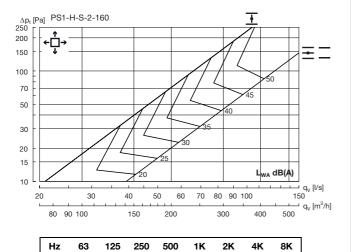
5

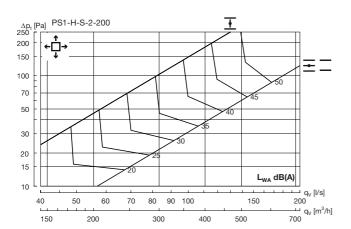
2

8

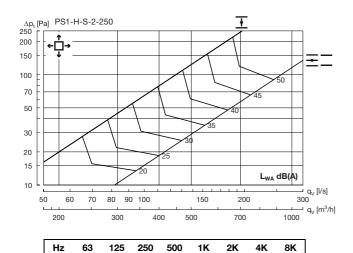
4

3


-3

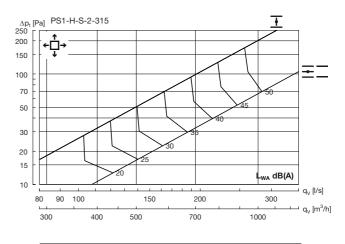

-6

-11


-15

-14

L				250	500	1K	2K	4K	8K
I	K _{ok}	5	5	1	-1	-7	-12	-12	-18



-14

-18

-19

PS1+H - Zuluft

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	13	4	0	-1	-6	-13	-17	-27

2

3

4

5

7

1 0

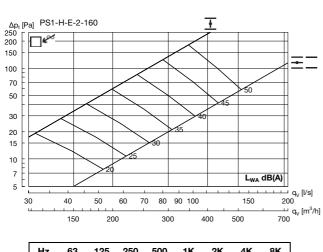
11

12

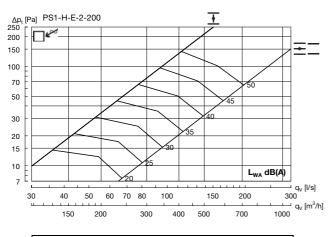
13

1 /

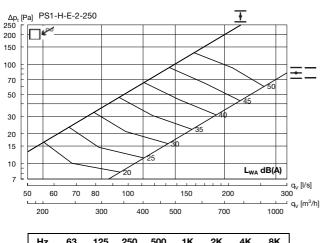
15


16

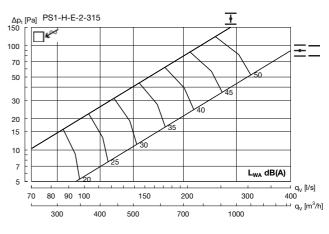
17


PS₁

Technische Daten


PS1+H - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
Kok	10	4	6	-3	-11	-12	-19	-25



Hz		125	250	500	1K	2K	4K	8K
K _{ok}	10	4	5	-2	-9	-13	-21	-29

			25 250					8K
K,	_{sk} 1	1 5	5 2	-2	-6	-12	-22	-32

PS1+H - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	3	1	1	-8	-16	-26	-37

PS8

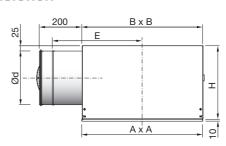
PS8 mit Anschlusskasten Typ V

Beschreibung

PS8 ist ein quadratischer Deckendurchlass mit perforierter Frontplatte und Dralleinsatz für Zuluft. Der Durchlass fügt sich auf natürliche Weise in die Decke ein und behält für die Zuluft die ausgezeichneten technischen Merkmale eines Dralldurchlasses bei. Der PS8 gewährleistet eine hohe Induktion, einen großen Dynamikbereich und ist daher ideal für die horizontale Zufuhr von sehr kalter Luft geeignet.

- Unauffällig
- Großer Dynamikbereich
- Hohe Induktion
- Ideal für die Zufuhr von sehr kalter Luft

Bestellcode



Beispiel: PS-8-V-S-0-200-1

PS8 mit Anschlusskasten Typ H

Dimensionen

PS8-H		Α	В	Н	E	Gewicht
Ød	Muster	mm	mm	mm	mm	kg
125	300	*-	380	215	350	5.9
160	400	*_	380	250	350	5.9
200	500	*-	460	290	390	8.5
250	600	*-	560	340	420	12.3
315	600	*_	560	405	420	13.1

* Die Abmessung A x A der Frontplatte hängt vom Deckensystem ab. Genauere Informationen zu den Abmessungen erhalten Sie unter "Deckenanpassung". Weitere Informationen zu Anschlusskästen erhalten Sie unter "Anschlusskästen".

Wartung

Zur Reinigung der internen Komponenten oder für den Zugang zum Kanal oder Anschlusskasten kann die Frontplatte entfernt werden. Die sichtbaren Teile des Durchlasses können mit einem feuchten Tuch abgewischt werden.

Material und Ausführung

Anschlusskasten:

Material: Verzinkter Stahl

Frontplatte:

Material: Verzinkter Stahl
Standardausführung: Pulverbeschichtet
Standardfarbe: RAL 9010 weiß

Der Durchlass ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

1

4

J

7

8

4 ^

11

12

13

14

15

16

17

19

Verlängerungsstutzen

Perforierter Deckendurchlass

Zubehör

Bestellcode Produktbezeichnung

Beispiel: MBZ-200

5

Größe

Montageschienen

PBB

MHS

MBZ

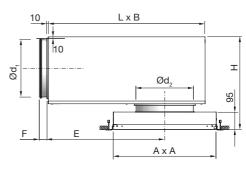
MBZ

aaa

Schnellspannhänger

Bestellcode

Produktbezeichnung aaa Тур


Beispiel: MHS

Anschlusskasten

MBB

PS8-V + MBB

PS8-V	+ MBB						
Rohr	PS8-V		В	E	F	Н*	L
Ød₁ mm	$\emptyset d_2 mm$	Muster	mm	mm	mm	mm	mm
100	160	300	260	216	50	255 - 295	310
125	160	300	310	262	50	280 - 320	376
125	200	400	310	262	50	280 - 320	376
160	160	300	380	323	50	314 - 354	459
160	200	400	380	323	50	314 - 354	459
160	250	500	380	323	50	314 - 354	459
200	200	400	460	396	70	355 - 395	565
200	250	500	460	396	70	355 - 395	565
200	315	600	460	396	70	355 - 395	565
250	250	500	540	486	70	405 - 445	698
250	315	600	540	486	70	405 - 445	698
315	315	600	540	646	70	470 - 510	858

* Bei Verwendung mit MBZ wird H länger bei:

 $Ød_2 = 160 - 200 \text{ mm} => H + 40 \text{ mm}$

 $Ød_2 = 250 - 315 \text{ mm} => H + 60 \text{ mm}$

Bestellcode

Produktbezeichnung	МВВ	aaa	bbb	С
Тур				
MBB				
Rohranschluss Ød ₁				
Ø100-315				
Durchlassgröße Ød ₂				
Ø160-315				
Funktion				
S = Zuluft				
E = Abluft				

Beispiel: PS-8-V-S-0-200-1+MBB-200-200-S

PS8

Technische Daten

Leistung

Die Diagramme zeigen den Gesamtdruckverlust Δp_t [Pa], Wurfweite I_{02} [m] sowie Schallleistungspegel I_{WA} [dB(A)] als Funktion des Volumenstromes I_{VA} [l/s, m³/h].

Frequenzabhängiger Schallleistungspegel

Der Schallleistungspegel im Frequenzbereich wird durch L_{WA} + K_{ok} definiert. Die Werte für K_{ok} werden in Tabellen unter den folgenden Diagrammen angegeben.

Schnellauswahl, Zuluft

PS8-V + MBB

PS8-V	+ MBB	Δp _t ≥	50 Pa	$\Delta p_t \ge$	50 Pa
Rohr	PS8-V	30 dB(A)		35 c	IB(A)
Ød ₁	$\emptyset d_2$	l/s	m³/h	I/s	m³/h
100	160	31	112	38	137
125	160	36	130	43	155
125	200	48	173	60	216
160	160	37	133	44	158
160	200	52	187	62	223
160	250	67	241	84	302
200	200	59	212	70	252
200	250	82	295	98	353
200	315	72	259	88	317
250	250	83	299	97	349
250	315	81	292	96	346
315	315	-	-	102	367

Zuluft

PS8 + H

PS8 + H			Δp _t ≥	50 Pa	Δp _t ≥	$\Delta p_t \ge 50 \text{ Pa}$		
Größe Ød	Minimum		30 (dB(A)	35 dB(A)			
mm	l/s	m³/h	l/s	m³/h	l/s	m³/h		
125	26	93	23	83	29	104		
160	33	118	46	166	54	194		
200	57	204	61	220	74	266		
250	71	254	-	-	106	382		
315	95	342	-	-	-	-		

Eigendämpfung

Eigendämpfung der Durchlässe ΔL zwischen Rohr-/Kanalsystem und Raum, einschließlich Mündungsreflexion.

PS8-V + MBB

PS8-V	+ MBB								
Rohr	PS8-V			Mitt	telfred	quenz	Hz		
Ød ₁	$\emptyset d_2$	63	125	250	500	1K	2K	4K	8K
100	160	18	16	5	17	20	19	17	21
125	160	16	13	9	19	18	18	18	20
125	200	14	11	5	15	16	17	17	19
160	160	15	16	11	23	20	20	21	21
160	200	15	15	8	22	20	18	20	20
160	250	16	13	5	18	16	16	17	20
200	200	14	11	7	17	21	17	20	18
200	250	14	9	5	14	18	15	18	17
200	315	13	9	3	13	17	15	17	16
250	250	13	8	7	17	18	18	18	18
250	315	16	7	5	16	16	17	17	18
315	315	9	9	9	16	17	17	18	23

PS8 + H

PS8 + H											
Größe Ød		Mittelfrequenz Hz									
mm	63	125	250	500	1K	2K	4K	8K			
125	18	13	8	19	14	11	12	15			
160	18	12	3	14	13	7	7	8			
200	14	9	3	14	9	7	8	11			
250	14	8	7	10	8	7	9	12			
315	12	6	8	13	8	7	10	12			

Einregulierung und Montage

Für weitere Information siehe www.lindab.de und Montageund Einregulierungsanweisung.

А

7

4 (

4 4

4 6

4 4

1 5

16

17

Technische Daten

Wurfweite I_{0.2}

80 100

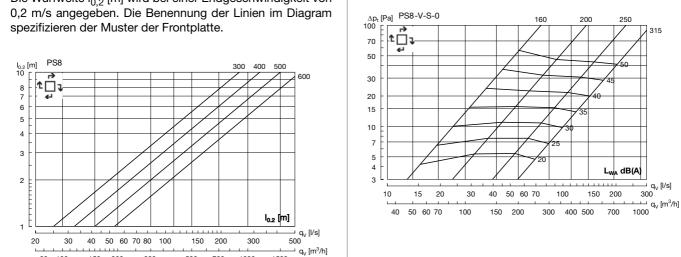
150 200

Perforierter Deckendurchlass

Die Wurfweite $I_{0,2}$ [m] wird bei einer Endgeschwindigkeit von

500

700

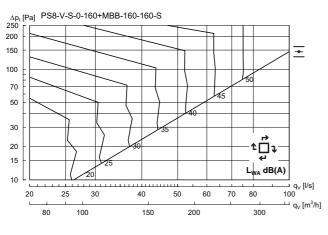

1000

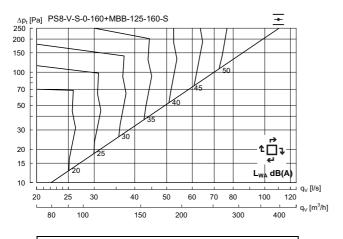
1500

315

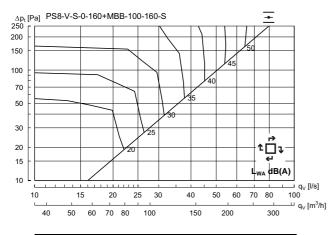
☐ q_v [l/s] 300

PS8-V ohne Anschlusskasten - Zuluft

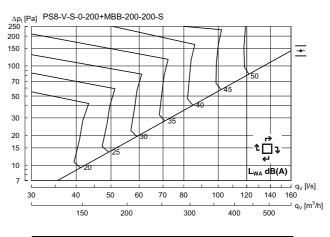



PS8

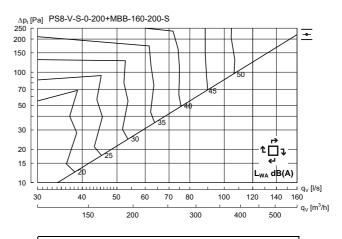
Technische Daten


PS8-V 160 + MBB - Zuluft

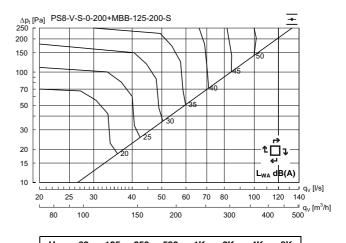
			125	250	500	1K	2K	4K	8K
ĺ	K _{ok}	9	0	-2	1	-7	-17	-28	-38



				500				8K
K_{ok}	8	3	-1	1	-7	-16	-24	-31



				500				
K _{ok}	10	3	3	-1	-8	-14	-18	-23


PS8-V 200 + MBB - Zuluft

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	13	0	-5	1	-6	-20	-29	-40

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	6	3	-2	1	-6	-16	-22	-30

HZ	63	125	250	500	1K	2K	4K	8K
K _{ok}	6	5	2	-1	-6	-13	-19	-25

2

3

7

10

11

12

13

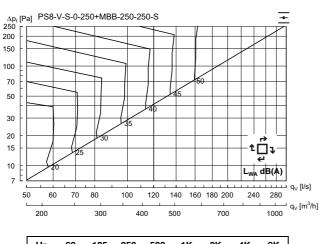
14

15

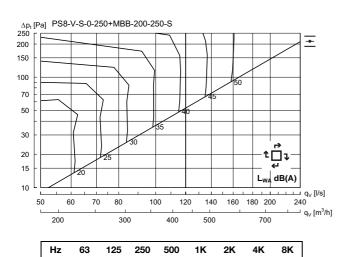
16

4 7

40


Ιč

PS8


Technische Daten

5

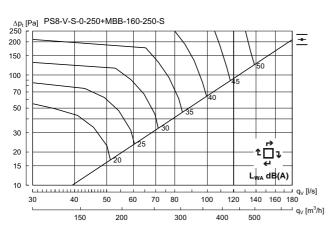
PS8-V 250 + MBB - Zuluft

Hz	63	125	250	500	1K	2K	4K	8K
Kok	8	0	-5	1	-6	-19	-28	-40

12

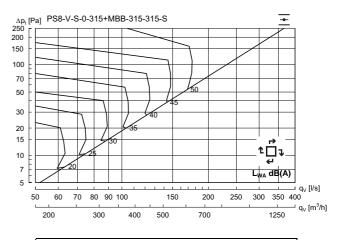
4

-2

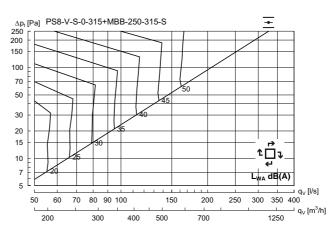

0

-6

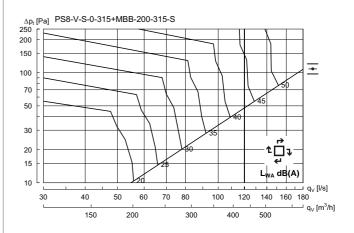
-16


-20

-26



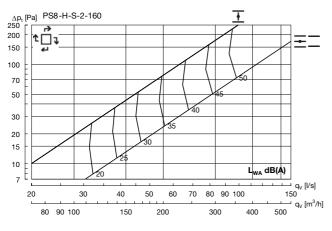
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	15	5	1	-2	-5	-13	-20	-26


PS8-V 315 + MBB - Zuluft

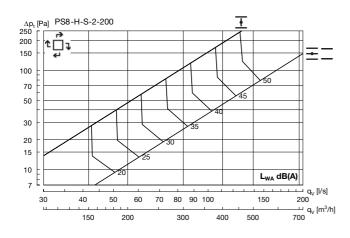
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	-4	-2	1	-7	-21	-26	-35

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	8	0	-3	2	-8	-21	-29	-39

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	10	2	-1	1	-7	-18	-23	-29


PS8

Technische Daten


PS8 + H - Zuluft

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	3	4	4	0	-10	-18	-25	-31

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	1	3	5	-2	-9	-19	-25	-32

500

1K

-7

2K

-16

4K

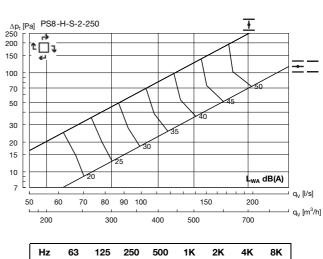
-23

8K

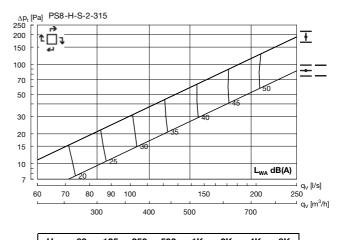
-29

Hz

 K_{ok}


63

125

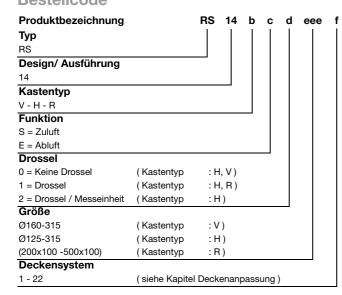

250

3

PS8 + H - Zuluft

112 0	3 125	250	500	IN	2K	4K	8K
K _{ok} 5	6	4	-1	-8	-18	-26	-33

HZ	63	125	250	500	1K	2K	4K	8K	
K _{ok}	7	5	3	0	-9	-21	-31	-41	

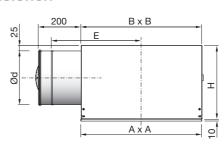

RS14 mit Anschlusskasten Typ V

Beschreibung

RS 14 ist ein quadratischer Dralldurchlass mit feststehenden Lamellen für Zu- und Abluft. Der Durchlass hat eine hohe Induktion und gewährleistet einen schnellen Temperaturausgleich sowie einen schnellen Abbau der Strahlgeschwindigkeit. Der Durchlass ist daher ideal für die horizontale Zufuhr von sehr kalter Luft.

- Großer Dynamikbereich
- Hohe Induktion
- Geeignet für Kühlung bei sehr niedrigen Temperaturen
- Zu- und Abluft

Bestellcode



Beispiel: RS-14-V-S-0-200-1

RS14 mit Anschlusskasten Typ H

Dimensionen

RS14-H		Α	В	Н	Е	Gewicht
Ød	Muster	mm	mm	mm	mm	kg
125	400	*_	380	215	350	5.9
160	400	*_	380	250	350	5.9
200	500	*-	460	290	390	8.5
250	600	*_	560	340	420	12.3
315	600	*_	560	405	420	13.1

*Die Abmessung A x A der Frontplatte hängt vom Deckensystem ab. Genauere Informationen zu den Abmessungen erhalten Sie unter **"Deckenanpassung"**. Weitere Informationen zu Anschlusskästen erhalten Sie unter **"Anschlusskästen"**.

Wartung

Zur Reinigung der internen Komponenten oder für den Zugang zum Kanal oder Anschlusskasten kann die Frontplatte entfernt werden. Die sichtbaren Teile des Durchlasses können mit einem feuchten Tuch abgewischt werden.

Material und Ausführung

Anschlusskasten:

Material: Verzinkter Stahl

Frontplatte:

Material: Verzinkter Stahl
Standardausführung: Pulverbeschichtet
Standardfarbe: RAL 9010 weiß

Der Durchlass ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

4

5

7

8

11

12

13

14

15

16

17

16

RS14

5

Zubehör Verlängerungsstutzen **MBZ**

Bestellcode

Produktbezeichnung	MBZ	aaa
Тур		
Größe		

beispiel: MBZ-200

Montageschienen

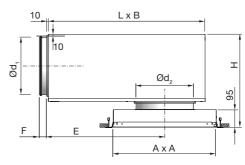
PBB

MHS

Schnellspannhänger

Bestellcode

Produktbezeichnung	aaa
Тур	


Beispiel: MHS

Anschlusskasten

MBB

RS14-V + MBB

RS14-V	+ MBB						
Rohr	RS14-V		В	E	F	H*	L
Ød ₁ mm	$Ød_2 mm$	Muster	mm	mm	mm	mm	mm
100	160	400	260	216	50	255 - 295	310
125	160	400	310	262	50	280 - 320	376
125	200	400	310	262	50	280 - 320	376
160	160	400	380	323	50	314 - 354	459
160	200	400	380	323	50	314 - 354	459
160	250	500	380	323	50	314 - 354	459
200	200	400	460	396	70	355 - 395	565
200	250	500	460	396	70	355 - 395	565
200	315	600	460	396	70	355 - 395	565
250	250	500	540	486	70	405 - 445	698
250	315	600	540	486	70	405 - 445	698
315	315	600	540	646	70	470 - 510	858

* Bei Verwendung mit MBZ wird H länger bei:

 $Ød_2 = 160 - 200 \text{ mm} => H + 40 \text{ mm}$

 $Ød_2 = 250 - 315 \text{ mm} => H + 60 \text{ mm}$

Bestellcode

Produktbezeichnung	МВВ	aaa	bbb	С
Тур				
MBB				
Rohranschluss Ød ₁	<u> </u>			
Ø100-315				
Durchlassgröße Ød ₂				
Ø160-315				
Funktion				
S = Zuluft				
E = Abluft				

Beispiel: RS-14-V-S-0-200-1+MBB-200-200-S

RS14

Technische Daten

Leistung

Die Diagramme zeigen den Gesamtdruckverlust Δp_t [Pa], Wurfweite I_{02} [m] sowie Schallleistungspegel L_{WA} [dB(A)] als Funktion des Volumenstromes q_v [l/s, m³/h].

Frequenzabhängiger Schallleistungspegel

Der Schallleistungspegel im Frequenzbereich wird durch L_{WA} + K_{ok} definiert. Die Werte für K_{ok} werden in Tabellen unter den folgenden Diagrammen angegeben.

Schnellauswahl, Zuluft

RS14-V + MBB

RS14-V	+ MBB	Δp _t ≥	50 Pa	$\Delta p_t \ge$	50 Pa
Rohr	RS14-V	30 c	30 dB(A)		IB(A)
Ød ₁	$\emptyset d_2$	l/s	m³/h	l/s	m³/h
100	160	33	119	41	148
125	160	44	158	52	187
125	200	49	176	59	212
160	160	38	137	46	166
160	200	51	184	62	223
160	250	67	241	85	306
200	200	65	234	77	277
200	250	77	277	95	342
200	315	100	360	124	446
250	250	89	320	104	374
250	315	110	396	132	475
315	315	129	464	151	544

Zuluft

RS14 + H

RS14 + H			Δp _t ≥	50 Pa	Δp _t ≥	50 Pa
Größe Ød	Minimum		30 dB(A)		35 dB(A)	
mm	I/s	m³/h	l/s	m³/h	l/s	m³/h
125	26	93	28	101	34	122
160	33	118	53	191	63	227
200	57	204	65	234	80	288
250	71	254	89	320	107	385
315	95	342	-	-	148	533

Eigendämpfung

Eigendämpfung der Durchlässe ΔL zwischen Rohr-/Kanalsystem und Raum, einschließlich Mündungsreflexion.

RS14-V + MBB

RS14-\	/ + MBB								
Rohr	RS14-V			Mitt	telfrec	quenz	Hz		
Ød ₁	$\emptyset d_2$	63	125	250	500	1K	2K	4K	8K
100	160	20	16	5	19	20	19	18	21
125	160	16	13	9	20	18	18	19	20
125	200	14	12	6	17	16	16	18	19
160	160	17	16	10	24	20	20	21	21
160	200	15	15	7	22	21	19	20	21
160	250	15	14	5	20	16	16	17	19
200	200	14	11	7	18	21	17	20	18
200	250	13	9	5	17	18	16	18	17
200	315	13	8	3	15	17	15	17	16
250	250	15	8	7	18	18	18	18	19
250	315	15	7	6	16	16	17	17	18
315	315	8	11	8	16	18	17	17	22

RS14 + H

RS14 + H											
Größe Ød		Mittelfrequenz Hz									
mm	63	125	250	500	1K	2K	4K	8K			
125	18	13	8	18	14	11	12	14			
160	17	13	3	14	13	7	7	8			
200	15	10	3	13	9	6	8	10			
250	12	9	6	11	8	7	10	12			
315	12	7	7	13	8	7	10	12			

RS14 + R

RS14 + R												
Größe		Mittelfrequenz Hz										
mm	63	125	250	500	1K	2K	4K	8K				
200x100	19	14	9	6	5	3	3	4				
300x100	16	11	5	5	6	5	3	4				
400x100	13	8	2	3	4	5	4	5				
500x100	12	7	2	4	2	5	5	5				

Einregulierung und Montage

Für weitere Information siehe www.lindab.de und Montageund Einregulierungsanweisung. **Technische Daten**

Wurfweite I_{0.2}

Dralldurchlass

spezifizieren der Muster der Frontplatte.

RS14

1

2

3

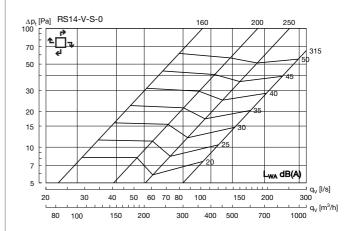
5

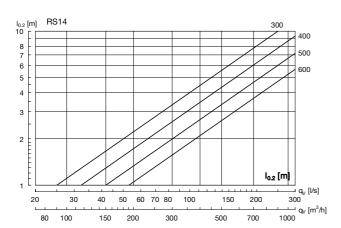
6

12

13

14

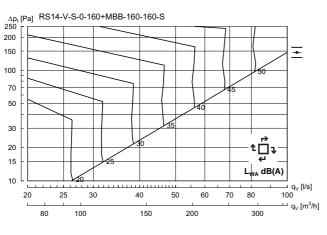

15


16

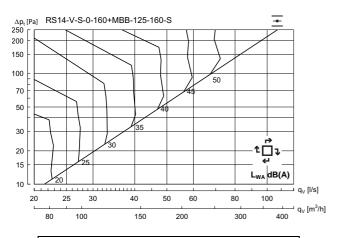
17

18

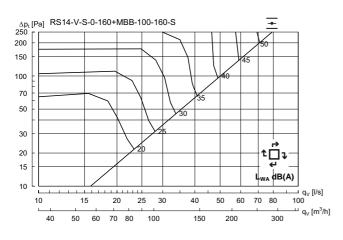
RS14-V ohne Anschlusskasten - Zuluft



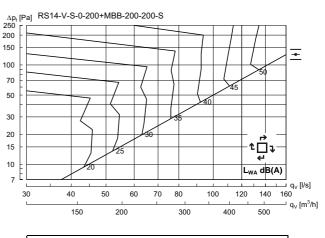
Die Wurfweite ${\rm I}_{0,2}$ [m] wird bei einer Endgeschwindigkeit von 0,2 m/s angegeben. Die Benennung der Linien im Diagram


RS14

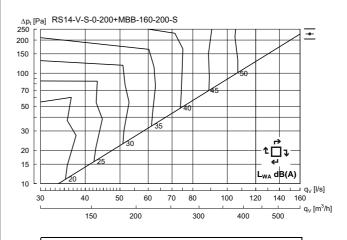
Technische Daten


RS14-V 160 + MBB - Zuluft

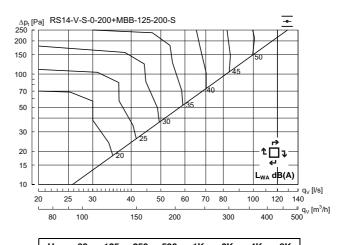
Hz	63	125	250	500	1K	2K	4K	8K
Kok	8	2	-1	1	-7	-17	-26	-36



				500				
K _{ok}	10	4	-1	1	-7	-17	-24	-29



Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	10	4	2	-1	-7	-13	-18	-22


RS14-V 200 + MBB - Zuluft

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	0	-5	0	-4	-15	-26	-36

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	2	-1	0	-6	-15	-24	-33

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	10	4	2	-1	-7	-13	-18	-22

2

5

6

1

a

10

4 A

15

16

47

1.8

RS14

1

2

5

6

Kok

8

9

2

-3

0

-5

-17

-26

-29

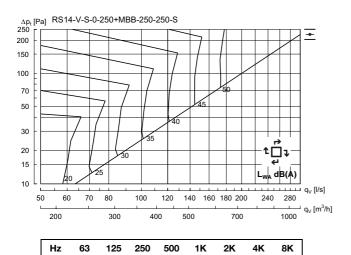
-1

-6

8

10

13

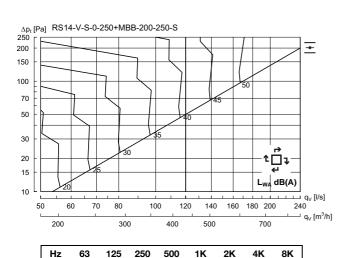

16

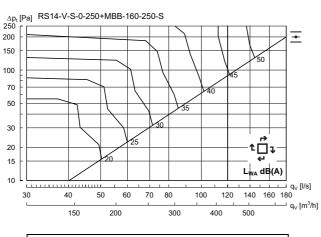
17

18

Technische Daten

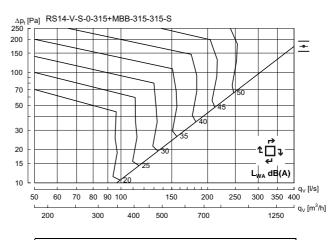
RS14-V 250 + MBB - Zuluft

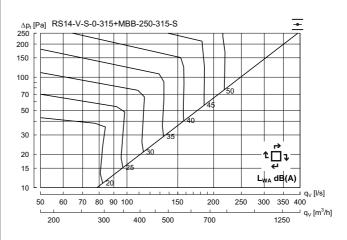



-5

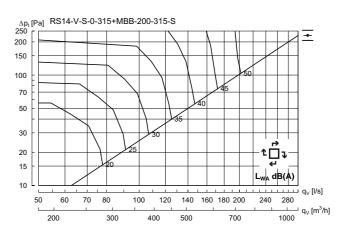
-18

-29


-40

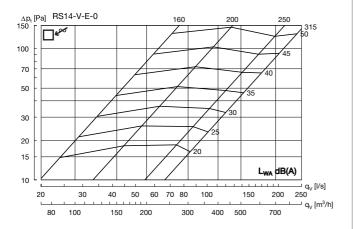


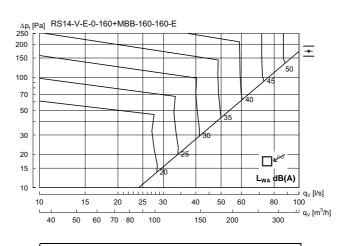
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	13	5	-1	-1	-5	-14	-20	-26


RS14-V 315 + MBB - Zuluft

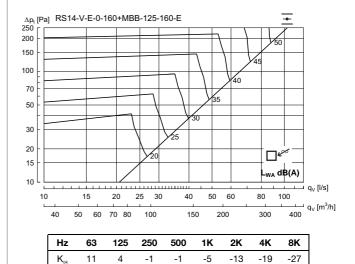
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	-1	-3	0	-5	-17	-25	-28

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	12	2	-3	0	-5	-15	-22	-30


				500				
K _{ok}	13	4	-1	-1	-6	-14	-19	-25


RS14

Technische Daten


RS14-V ohne Anschlusskasten - Abluft

RS14-V 160 + MBB - Abluft

Hz								
K _{ok}	12	2	-1	-1	-5	-13	-22	-31

Δp_t	[Pa]	RS14	-V-E-0-	160+M	BB-100-	160-E				<u>=</u>	
250	ſΕ			T					$\overline{}$	5 0]
200	ŀΗ					_		.	\rightarrow	/50	
150	ŀŀ			-				\rightarrow	\rightarrow	5	
	ΙГ			+				λ	. / [١	
100	ĿН			_			\rightarrow	_	\ 40		
	Fŀ								/		
70	ţΓ							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5		
50	ŀĿ					_	\leftarrow	/+			
	ŀĿ			-	\rightarrow		$\downarrow \rightarrow$	30			
20					`						
30	ΓF						25				
20	LL										
						20] XX	
15	tΓ			_					T. T	·	
10									Lw	dB(A)	
10	- =			111		سست	шш				q _v [l/s]
	5			10	15	20 2	25 30	40	50 60		
	_			40	50 00	70.00	400	45	0 000		q _V [m ³ /h]
		20	30	40	50 60	70 80	100	15	0 200	30	U
	Γ	Hz	63	125	250	500	1K	2K	ΔK	ЯK	

-2

4

-9

-5

-13

-23

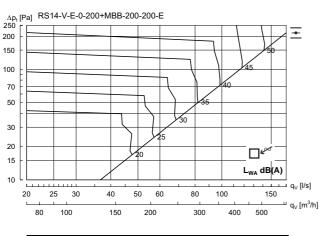
-17

-13

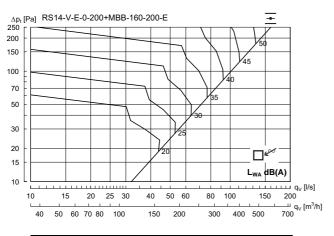
5

K_{ok}

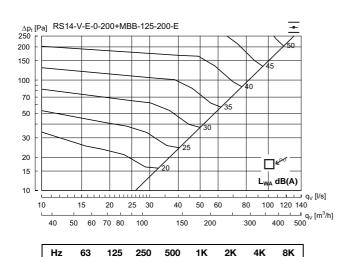
K_o


4

-1

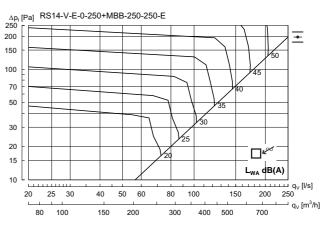

RS14

Technische Daten

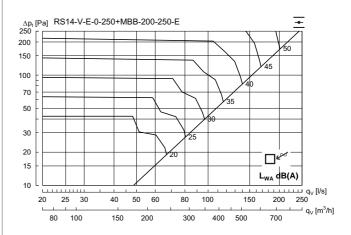

RS14-V 200 + MBB - Abluft

Hz								
Kok	13	4	-1	-1	-5	-12	-20	-28

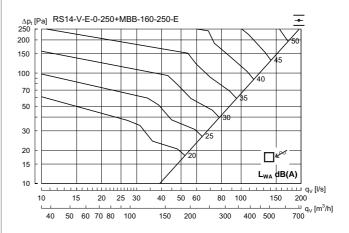
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	16	6	0	-2	-6	-12	-18	-25



-12


-16

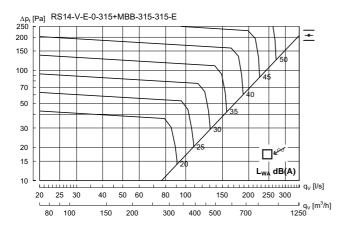
-23


RS14-V 250 + MBB - Abluft

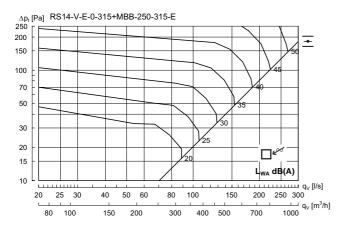
Hz	63	125	250	500	1K	2K	4K	8K
Kok	8	5	0	-1	-5	-11	-20	-28

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	14	5	1	-2	-5	-11	-19	-26

63	125	250	500	1K	2K	4K	8K
15	7	1	-2	-7	-11	-17	-22
	15	15 7					


11

4


RS14

Technische Daten

RS14-V 315 + MBB - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
Kok	11	4	1	-2	-5			-32

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	10	6	2	-2	-5	-12	-19	-27

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	14	5	2	-2	-6	-11	-16	-24
	Hz K _{ok}	Hz 63 K _{ok} 14	11 11 5	14 14 5 0				

1

2

3

4

J

8

11

12

13

14

15

RS14

Dralldurchlass

Technische Daten

RS14 + H - Zuluft

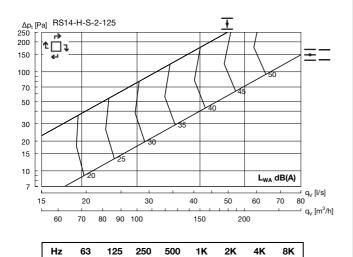
 K_{ok}

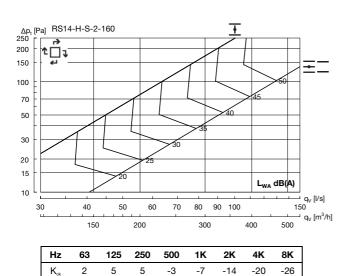
14

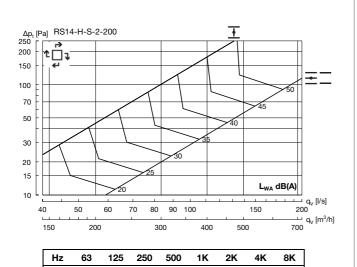
8

5

-3

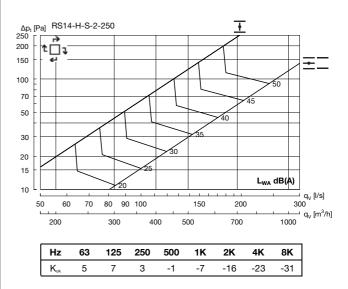

-10

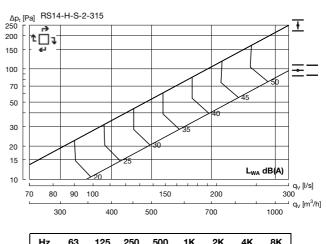

-17


-23

-28

5




-6

-14

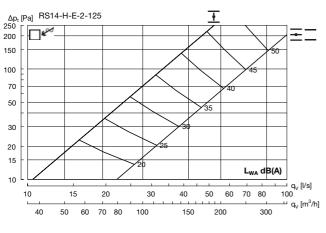
-21

RS14 + H - Zuluft

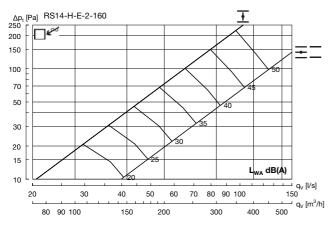
Hz	63							
K _{ok}	7	7	2	-1	-7	-16	-25	-35

K_o

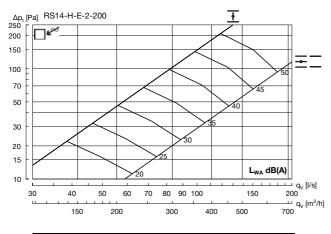
10


2

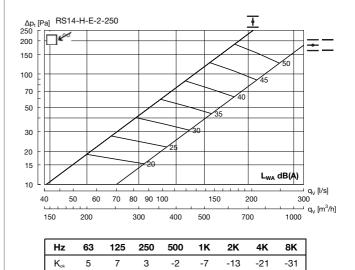
-29


RS14

Technische Daten


RS14 + H - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
Kok	3	7	3	-1	-8	-14	-19	-26



Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	2	6	5	-3	-8	-14	-22	-31

Hz	63	125	250	500	1K	2K	4K	8K
Kok	7	7	4	-3	-7	-13	-20	-25

RS14 + H - Abluft

o _{t [Pa]} RS14-H-E-2-3			
			\ <u> </u>
' 			50
· [45	
) 		40	
\ \	35		
	30		
	\backslash		
	25		
20			L _{WA} dB(A)
			q _v
80 90 100	150	200	300 350

500

-2

1K

-6

2K

-14

4K

-24

8K

-35

125

7

63

7

Hz

Kok

250

2

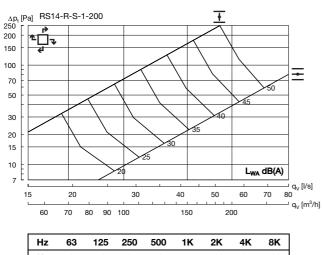
12

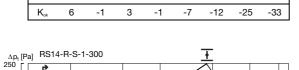
5

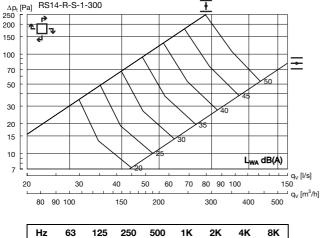
13

14

15


16

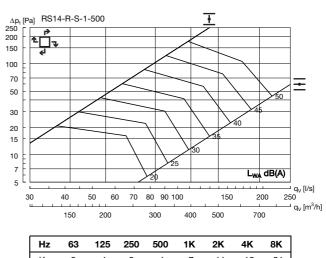

17


Technische Daten

RS14 + R - Zuluft

5

-8


-14

-22

4

Δp_t	_[Pa] RS14-R-	S-1-400			+			
250	[一产			П
200	<u></u> ^□¬				$\overline{}$			T
150	4			<				Ť
100	<u>-</u>			\rightarrow				H
70	Ī.			\sim		\setminus		₽ ≡
50	<u> </u>						50	Ш
50		<		\rightarrow	$\overline{}$	\perp		4
30						\	45	4
			L `	\setminus $ $		40		
20					35			
15					30			Ī
10	<u>-</u>		$\langle \cdot \rangle$	25			1 JD/A	H
7	<u>- L</u>		20_				L _{WA} dB(A	<u>)</u>
,	00 40		00 70	- 00	00.400		450	□ q _V [l/s]
	30 40	50	60 70	80	90 100		150	200 [⊥] q _v [m³/h]
	15	50 20	00	30	0 4	100 50	00 7	00

RS14 + R - Zuluft

Hz								
K _{ok}	3	-1	3	-1	-7	-11	-19	-31

Hz

63

125

250

500

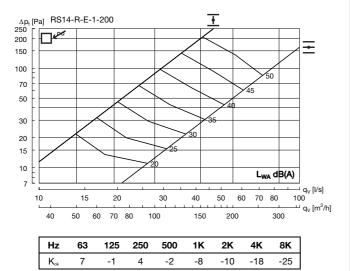
1K

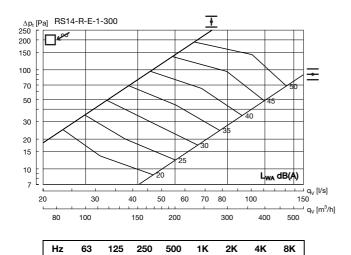
2K

-11

4K

-20

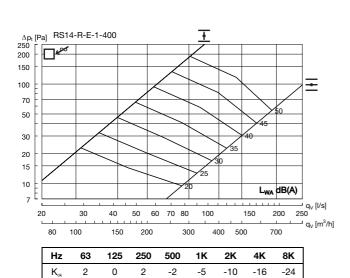

8K -32


-31

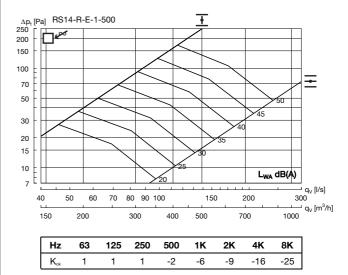
RS14

Technische Daten

RS14 + R - Abluft


6

4


-2

-10

-17

RS14 + R - Abluft

3

5

6

1 0

12

13

14

15

16

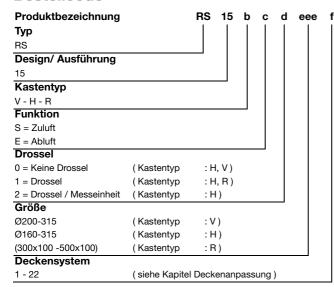
17

18

-25

5

RS15 mit Anschlusskasten Typ V

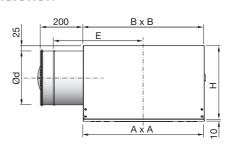

Beschreibung

RS15 ist ein quadratischer Dralldurchlass mit verstellbaren Lamellen für Zu- und Abluft. Der Durchlass hat eine hohe Induktion und gewährleistet einen schnellen Temperaturausgleich sowie einen schnellen Abbau der Strahlgeschwindigkeit. Der Durchlass ist daher ideal für die horizontale Zufuhr von sehr kalter Luft. Er kann auch auf vertikale Luftzufuhr eingestellt werden, was die Zufuhr von Warmluft ermöglicht.

Für Abluft wird der Durchlass standardmäßig ohne Lamellen geliefert.

- Großer Dynamikbereich
- Hohe Induktion
- Ideal für die Zufuhr von sehr kalter Luft
- Einstellbar für horizontale oder vertikale Luftzufuhr
- Zu- und Abluft

Bestellcode



Beispiel: RS15-V-S-0-200-1

RS15 mit Anschlusskasten Typ H

Dimensionen

RS15-H		Α	В	Н	Е	Gewicht
Ød	Muster	mm	mm	mm	mm	kg
160	400	*-	380	250	350	5.9
200	500	*_	460	290	390	8.5
250	600	*-	560	340	420	12.3
315	600	*_	560	405	420	13.1

*Die Abmessung A x A der Frontplatte hängt vom Deckensystem ab. Genauere Informationen zu den Abmessungen erhalten Sie unter "Deckenanpassung". Weitere Informationen zu Anschlusskästen erhalten Sie unter "Anschlusskästen".

Wartung

Zur Reinigung der internen Komponenten oder für den Zugang zum Kanal oder Anschlusskasten kann die Frontplatte entfernt werden. Die sichtbaren Teile des Durchlasses können mit einem feuchten Tuch abgewischt werden.

Material und Ausführung

Anschlusskasten:

Material: Verzinkter Stahl

Frontplatte:

Material: Verzinkter Stahl

Lamellen: Schwarzer ABS-kunststoff

Pulverbeschichtet Standardausführung: RAL 9010 weiß Standardfarbe:

Der Durchlass ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

5

Zubehör Verlängerungsstutzen **MBZ**

Bestellcode

Produktbezeichnung	MBZ	aaa
Тур		
Größe	<u> </u>	

Beispiel: MBZ-200

Montageschienen

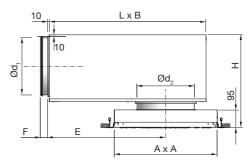
PBB

Schnellspannhänger

MHS

Bestellcode

Produktbezeichnung	aaa
Тур	


Beispiel: MHS

Anschlusskasten

MBB

RS15-V + MBB

RS15-V	+ MBB						
Rohr	RS15-V		В	E	F	H*	L
Ød ₁ mm	$Ød_2$ mm	Muster	mm	mm	mm	mm	mm
125	200	400	310	262	50	280 - 320	376
160	200	400	380	323	50	314 - 354	459
160	250	500	380	323	50	314 - 354	459
200	200	400	460	396	70	355 - 395	565
200	250	500	460	396	70	355 - 395	565
200	315	600	460	396	70	355 - 395	565
250	250	500	540	486	70	405 - 445	698
250	315	600	540	486	70	405 - 445	698
315	315	600	540	646	70	470 - 510	858

* Bei Verwendung mit MBZ wird H länger bei:

 $Ød_2 = 200 \text{ mm}$ => H + 40 mm

 $Ød_2 = 250 - 315 \text{ mm} => H + 60 \text{ mm}$

Bestellcode

Produktbezeichnung	МВВ	aaa	bbb	С
Тур		ĺ		1
MBB				
Rohranschluss Ød ₁	<u>.</u>			
Ø125-315				
Durchlassgröße Ød ₂				
Ø200-315				
Funktion				
S = Zuluft				
E = Abluft				

Beispiel: RS-15-V-S-0-200-1+MBB-200-200-S

RS15

Technische Daten

Leistung

Die Diagramme zeigen den Gesamtdruckverlust Δp_t [Pa], Wurfweite I_{02} [m] sowie Schallleistungspegel L_{WA} [dB(A)] als Funktion des Volumenstromes q_v [l/s, m³/h].

Frequenzabhängiger Schallleistungspegel

Der Schallleistungspegel im Frequenzbereich wird durch L_{WA} + K_{ok} definiert. Die Werte für K_{ok} werden in Tabellen unter den folgenden Diagrammen angegeben.

Schnellauswahl, Zuluft

RS15-V + MBB

RS15-V	+ MBB	$\Delta p_t \ge$	50 Pa	$\Delta p_t \ge$	50 Pa
Rohr	RS15-V	30 c	B(A)	35 c	B(A)
$Ød_1$	$\emptyset d_2$	l/s	m³/h	I/s	m³/h
125	200	53	191	63	227
160	200	56	202	67	241
160	250	72	259	91	328
200	200	60	216	73	263
200	250	84	302	102	367
200	315	94	338	119	428
250	250	94	338	112	403
250	315	107	385	128	461
315	315	123	443	144	518

Zuluft

RS15 + H

_		$\Delta p_t \ge$	50 Pa	∆p _t ≥ 50 Pa		
Minimum		30 d	dB(A)	35 c	IB(A)	
l/s	m³/h	l/s	m³/h	l/s	m³/h	
33	118	53	191	63	227	
57	204	65	234	80	288	
71	254	89	320	107	385	
95	342	-	-	148	533	
	1/s 33 57 71	I/s m³/h 33 118 57 204 71 254	Minimum 30 cm I/s m³/h I/s 33 118 53 57 204 65 71 254 89	I/s m³/h I/s m³/h 33 118 53 191 57 204 65 234 71 254 89 320	Minimum 30 dB(A) 35 dB(A) I/s m³/h I/s 33 118 53 191 63 57 204 65 234 80 71 254 89 320 107	

Eigendämpfung

Eigendämpfung der Durchlässe ΔL zwischen Rohr-/Kanalsystem und Raum, einschließlich Mündungsreflexion.

RS15-V + MBB

RS15-\	/ + MBB								
Rohr	RS15-V			Mitt	telfrec	uenz	Hz		
Ød ₁	$\emptyset d_2$	63	125	250	500	1K	2K	4K	8K
125	200	14	13	6	16	18	17	18	19
160	200	15	15	8	22	21	20	20	20
160	250	15	14	4	20	17	18	18	20
200	200	14	11	8	17	21	18	21	18
200	250	14	9	5	17	18	16	18	17
200	315	12	9	4	16	17	16	17	16
250	250	15	9	8	19	19	18	18	18
250	315	16	7	5	15	16	17	17	18
315	315	10	10	8	16	18	17	17	23

RS15 + H

RS15 + H									
Größe Ød		Mittelfrequenz Hz							
mm	63	125	250	500	1K	2K	4K	8K	
160	17	12	5	15	14	10	9	9	
200	14	8	4	13	10	7	8	11	
250	12	8	6	9	7	7	8	10	
315	12	6	7	12	6	6	8	10	

RS15 + R

RS15 + R								
Größe			Mi	ttelfre	quenz	Hz		
mm	63	125	250	500	1K	2K	4K	8K
300x100	16	11	5	5	6	5	3	4
400x100	13	8	2	3	4	5	4	5
500x100	12	7	2	4	2	5	5	5

Einregulierung und Montage

Für weitere Information siehe www.lindab.de und Montageund Einregulierungsanweisung.

RS15

1

2

4

6

5

Ω

4 0

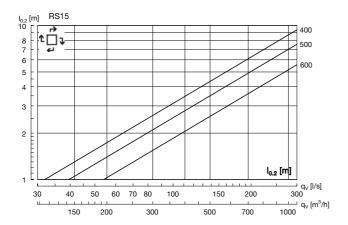
13

14

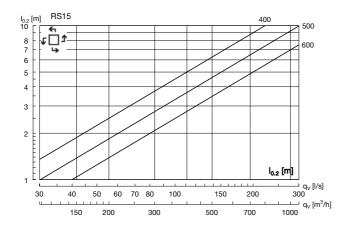
15

16

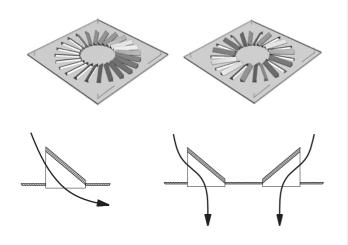
17


18

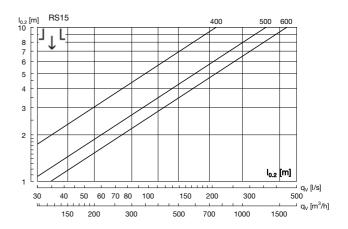
Technische Daten

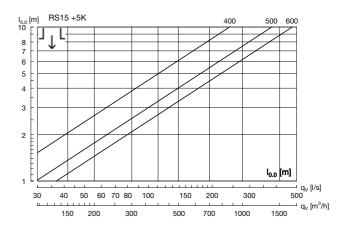

Wurfweite I_{0.2}

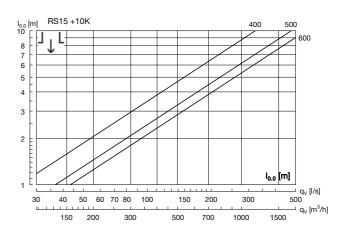
Die Wurfweite $I_{0,2}$ [m] wird bei einer Endgeschwindigkeit von 0,2 m/s angegeben. Die Benennung der Linien im Diagram spezifizieren der Muster der Frontplatte.


Innendrall

Außendrall

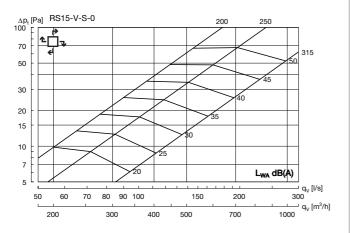


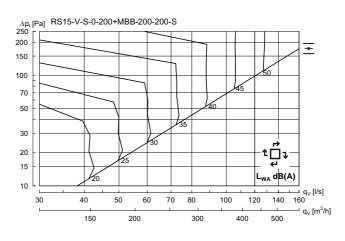

Horizontale und vertikale Lamellen



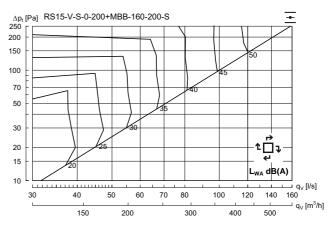
Wurfweiten/Wendepunkte

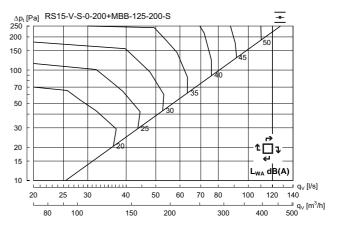
Die Wurfweite $I_{0,2}$ [m] ist aus dem Diagramm ersichtlich. Die Wurfweite gilt für isothermische Luft bei einer Endgeschwindigkeit von 0,2 m/s. Der Wendepunkt $I_{0,0}$ (m) für erwärmte Zuluft ist aus dem Diagramm ersichtlich, +5 K bzw. +10 K. Die Benennung der Linien im Diagram spezifizieren der Muster der Frontplatte.




RS15

Technische Daten


RS15-V ohne Anschlusskasten – Zuluft


RS15-V 200 + MBB - Zuluft

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	13	2	-4	0	-5	-14	-21	-29

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	4	-2	-1	-5	-13	-19	-27

Hz								
K _{ok}	12	5	1	-1	-6	-11	-16	-22

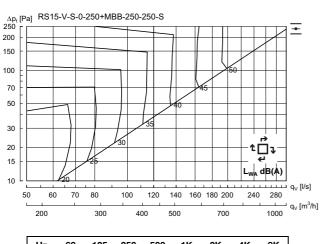
3

5

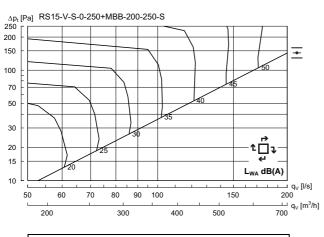
6

9

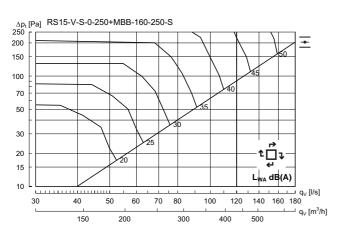
10


4 A

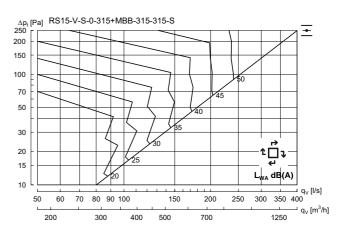
15


17

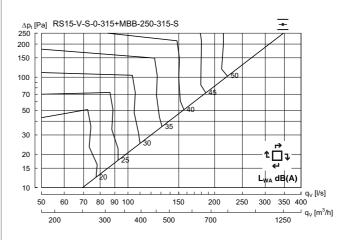
Technische Daten


RS15-V 250 + MBB - Zuluft

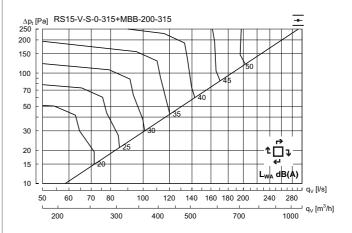
Hz	63	125	250	500	1K	2K	4K	8K
Kok	10	2	-3	0	-5	-14	-20	-30



Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	4	-1	0	-7	-14	-22	-30

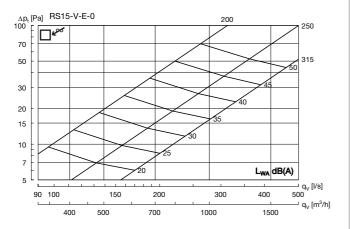


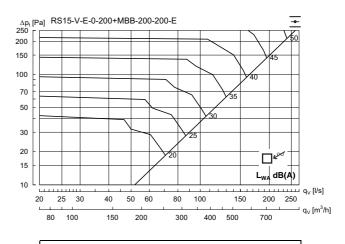
				500				
K _{ok}	12	4	0	-2	-5	-11	-18	-24


RS15-V 315 + MBB - Zuluft

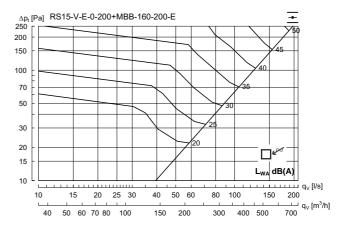
Hz	63	125	250	500	1K	2K	4K	8K
Kok	9	3	0	0	-6	-13	-20	-30

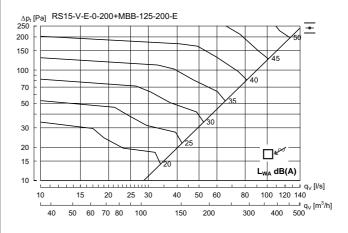
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	10	4	-1	-1	-5	-13	-19	-28


Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	10	6	0	-1	-6	-12	-18	-27


RS15

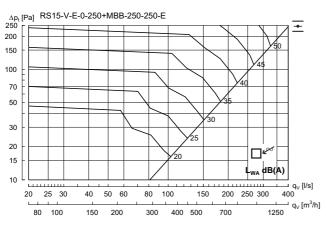
Technische Daten


RS15-V ohne Anschlusskasten - Abluft

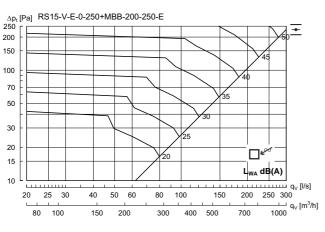

RS15-V 200 + MBB - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
Kok	14	5	1	-3	-6	-10	-15	-23

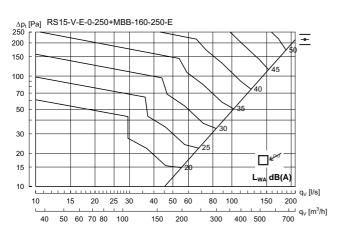
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	14	6	0	-2	-7	-9	-15	-19



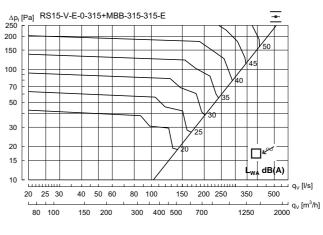
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	13	4	1	-1	-7	-11	-15	-22


RS15

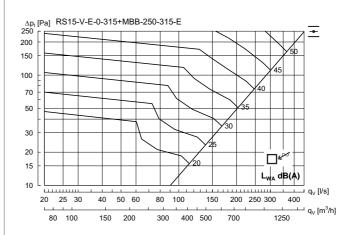
Technische Daten


RS15-V 250 + MBB - Abluft

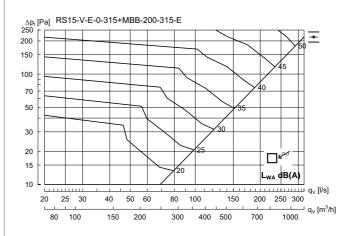
Hz	63	125	250	500	1K	2K	4K	8K
Kok	10	6	3	-4	-6	-10	-16	-24



Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	14	5	1	-3	-6	-10	-13	-21



Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	15	7	1	-3	-6	-10	-16	-19


RS15-V 315 + MBB - Abluft

				500				
Kok	12	6	3	-3	-6	-11	-16	-26

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	6	2	-4	-6	-10	-16	-23

2 03	125	250	500	1K	2K	4N	or
_k 14	5	1	-3	-6	-10	-14	-22
	, 14	, 14 5		14 5 1 0			

RS15

Technische Daten

RS15 + H - Zuluft

 K_{ok}

K_{ok}

 K_{ok}

5

7

3

10

2

5

5

2

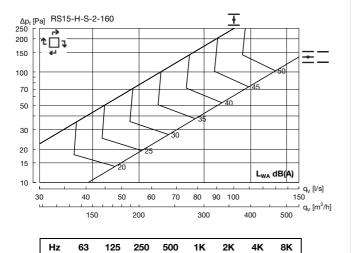
-2

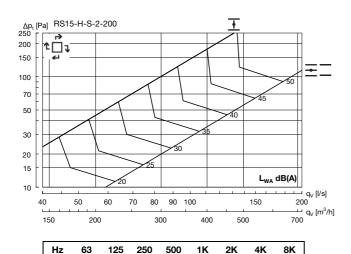
-6

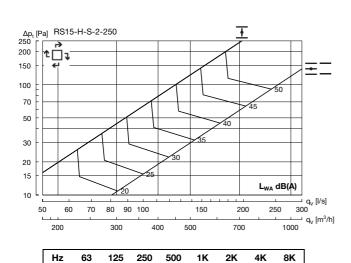
-14

-21

-3

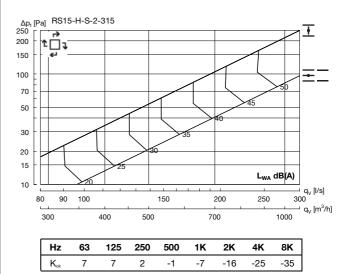

-7


-14


-20

-26

-29


-7

-16

-23

-31

RS15 + H - Zuluft

5

10

1 2

14

15

16

17

1

2

3

4

5

1 (

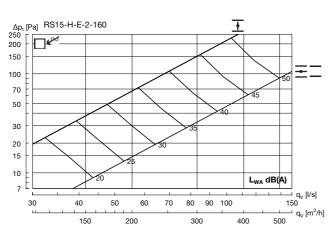
11

12

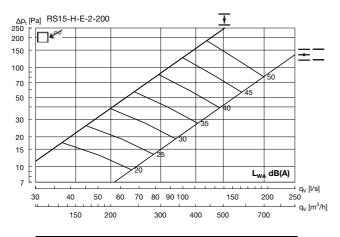
13

14

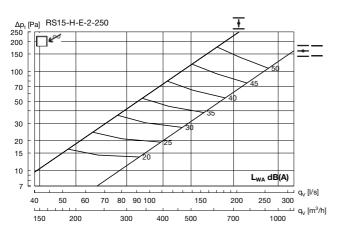
15


16

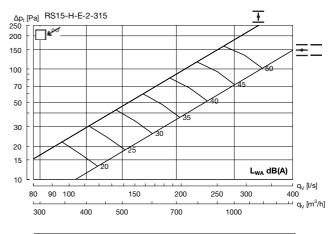
17


18

Technische Daten


RS15 + H - Abluft

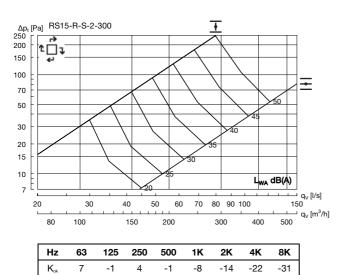
Hz								
K _{ok}	9	7	6	-4	-10	-13	-22	-31

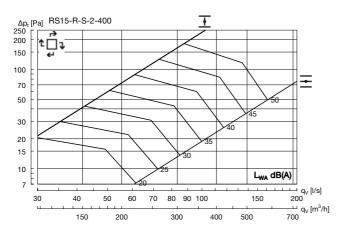


Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	6	9	4	-4	-8	-12	-19	-29

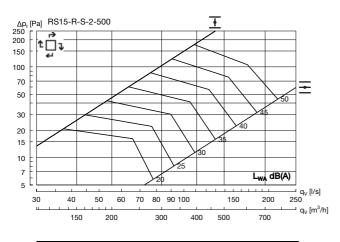
Hz 63 125 250 500 1K 2K 4K 8K K_{sk} 6 7 2 -2 -6 -13 -22 -31

RS15 + H - Abluft

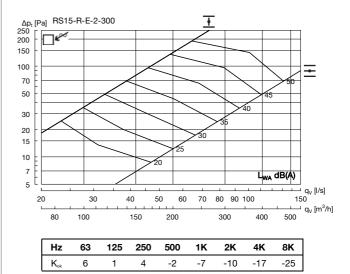


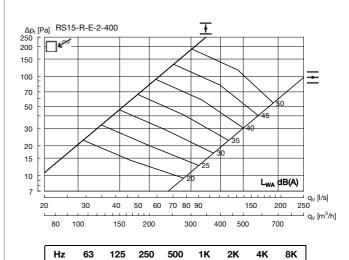

Hz	63	125	250	500	1K	2K	4K	8K
Kok	7	6	2	-2	-5	-12	-24	-33

RS15


Technische Daten

RS15 + R - Zuluft




Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	-2	-1	3	-1	-6	-11	-20	-32

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	3	-1	3	-1	-7	-11	-19	-31

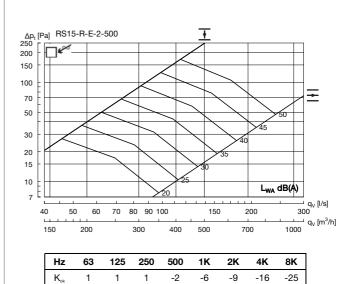
RS15 + R - Abluft

-2

-5

-10

-16


-24

2

0

2

K,

l lindab [°]

2

J

5

6

3

4 -4

12

19

14

15

16

17

3 [

RS16

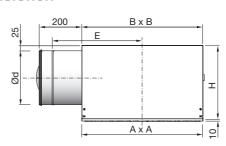
RS16 mit Anschlusskasten Typ V

Beschreibung

RS 16 ist ein quadratischer Dralldurchlass mit verstellbaren Lamellen für Zu- und Abluft bei großen Luftmengen. Der Durchlass hat eine hohe Induktion und gewährleistet einen schnellen Temperaturausgleich sowie einen schnellen Abbau der Strahlgeschwindigkeit. Der Durchlass ist daher ideal für die horizontale Zufuhr von sehr kalter Luft. Für Abluft wird der Durchlass standardmäßig ohne Lamellen geliefert.

- Großer Dynamikbereich
- Hohe Induktion
- Ideal für die Zufuhr von sehr kalter Luft
- Zu- und Abluft

Bestellcode



Beispiel: RS-16-V-S-0-315-1

RS16 mit Anschlusskasten Typ H

Dimensionen

RS16-H		Α	В	Н	Е	Gewicht
Ød	Muster	mm	mm	mm	mm	kg
250	600	*_	560	340	420	12.3
315	600	*_	560	405	420	13.1

*Die Abmessung A x A der Frontplatte hängt vom Deckensystem ab. Genauere Informationen zu den Abmessungen erhalten Sie unter **"Deckenanpassung**". Weitere Informationen zu Anschlusskästen erhalten Sie unter **"Anschlusskästen"**.

Wartung

Zur Reinigung der internen Komponenten oder für den Zugang zum Kanal oder Anschlusskasten kann die Frontplatte entfernt werden. Die sichtbaren Teile des Durchlasses können mit einem feuchten Tuch abgewischt werden.

Material und Ausführung

Anschlusskasten:

Material: Verzinkter Stahl

Frontplatte:

Material: Verzinkter Stahl

Lamellen: Schwarzer ABS-Kunststoff

Standardausführung: Pulverbeschichtet Standardfarbe: RAL 9010 weiß

Der Durchlass ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

1

4

5

7

8

11

12

13

14

15

4 6

RS16

1

2

<u>ی</u>

5

8

10

13

16

1 Q

18

Verlängerungsstutzen MBZ

Bestellcode

Zubehör

Produktbezeichnung	MBZ	aaa
Тур		
Größe	<u></u> _	
	•	

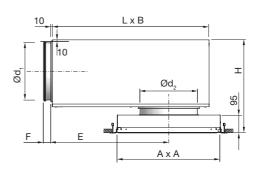
Beispiel: MBZ-315

Montageschienen PBB

Schnellspannhänger

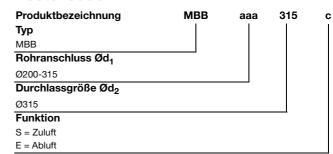
Bestellcode

Produktbezeichnung aaa Typ


Beispiel: MHS

Anschlusskasten

MBB


RS16-V + MBB

RS16-V + MBB							
Rohr	RS16-V		В	E	F	H*	L
Ød ₁ mm	$Ød_2$ mm	Muster	mm	mm	mm	mm	mm
200	315	600	460	396	70	355 - 395	565
250	315	600	540	486	70	405 - 445	698
315	315	600	540	646	70	470 - 510	858

 * Bei Verwendung mit MBZ wird H länger bei: $\varnothing d_2 = 315 \text{ mm} => \text{H} + 60 \text{ mm}$

Bestellcode

Beispiel: RS-16-V-S-0-315-1+MBB-315-315-S

MHS

RS16

Technische Daten

Leistung

Die Diagramme zeigen den Gesamtdruckverlust Δp_t [Pa], Wurfweite I_{02} [m] sowie Schallleistungspegel I_{WA} [dB(A)] als Funktion des Volumenstromes I_{VA} [l/s, m³/h].

Frequenzabhängiger Schallleistungspegel

Der Schallleistungspegel im Frequenzbereich wird durch L_{WA} + K_{ok} definiert. Die Werte für K_{ok} werden in Tabellen unter den folgenden Diagrammen angegeben.

Schnellauswahl, Zuluft

RS16-V + MBB

RS16-V	+ MBB	Δp _t ≥	50 Pa	Δp _t ≥ 50 Pa		
Rohr	RS16-V	30 dB(A)		35 dB(A)		
Ød ₁	$\emptyset d_2$	l/s m ³ /h		I/s	m³/h	
200	315	99	356	131	472	
250	315	126	454	160	576	
315	315	155	558	185	666	

RS16 + H

RS16 + H			∆p _t ≥	50 Pa	∆p _t ≥ 50 Pa	
Größe Ød	Minimum		30 (dB(A)	35 dB(A)	
mm	l/s	m³/h	I/s	m³/h	l/s	m³/h
250	71	254	-	-	112	403
315	95	342	-	-	174	626

Eigendämpfung

Eigendämpfung der Durchlässe ΔL zwischen Rohr-/Kanalsystem und Raum, einschließlich Mündungsreflexion.

RS16-V + MBB

F	RS16-V + MBB									
R	lohr	RS16-V			Mitt	elfreq	uenz	Hz		
Q	Ød₁	$\emptyset d_2$	63	125	250	500	1K	2K	4K	8K
:	200	315	13	9	3	16	16	15	17	16
:	250	315	12	7	5	17	16	17	17	18
;	315	315	8	10	8	17	18	17	18	23

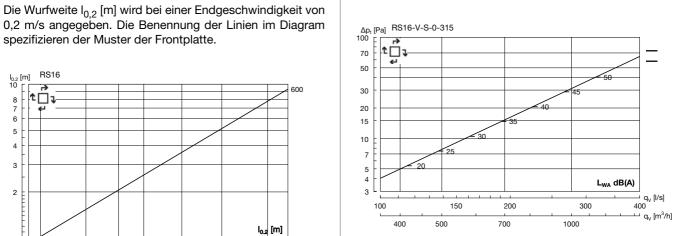
RS16 + H

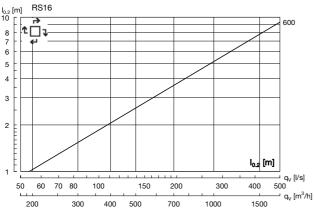
RS16 + H								
Größe Ød			Mit	telfred	quenz	Hz		
mm	63	125	250	500	1K	2K	4K	8K
250	13	8	4	8	5	5	7	9
315	12	7	5	11	5	5	6	8

RS16 + R

RS16 + R								
Größe			Mi	ttelfre	quenz	Hz		
mm	63	125	250	500	1K	2K	4K	8K
500x100	12	7	2	4	2	5	5	5

Technische Daten

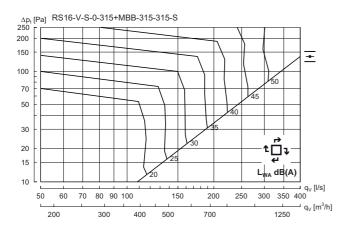

Wurfweite I_{0.2}


Dralldurchlass

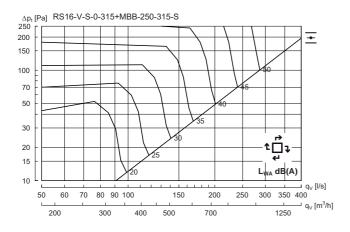
spezifizieren der Muster der Frontplatte.

RS16

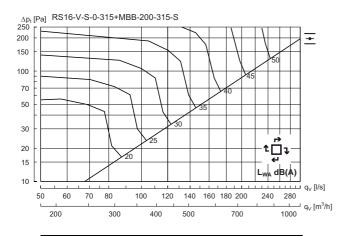
RS16-V ohne Anschlusskasten - Zuluft



Lindab


RS16

Technische Daten


RS16-V 315 + MBB - Zuluft

Hz	63	125	250	500	1K	2K	4K	8K
Kok	8	1	-1	0	-6	-14	-21	-30

				500				
K_{ok}	10	4	-1	-1	-5	-12	-19	-26

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	12	7	-1	-2	-5	-12	-18	-24
	Hz K _{ok}	Hz 63 K _{ok} 12		Hz 63 125 250 K _{ok} 12 7 -1				

4 7

Technische Daten

Δp_t [Pa] RS16-V-E-0-315

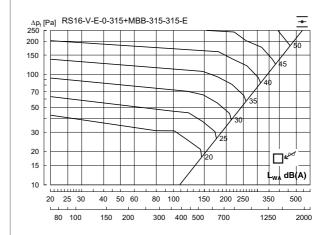
Dralldurchlass

-₂₅

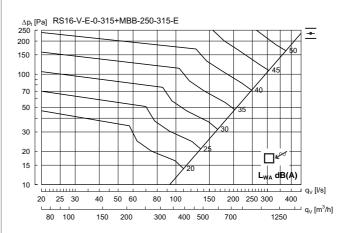
RS16-V ohne Anschlusskasten - Abluft

L_{WA} dB(A)

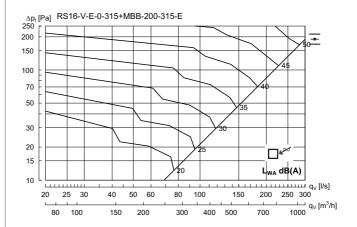
─ q_v [l/s]


q_v [m³/h]

RS16

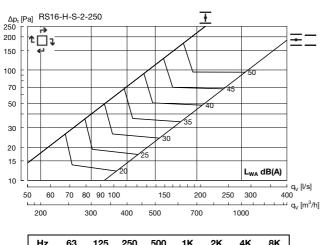

q_v [l/s]

 $q_V\,[m^3/h]$

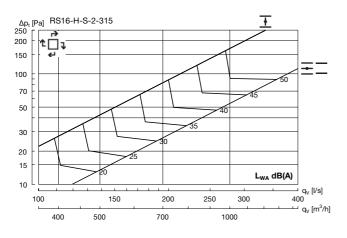

RS16-V 315 + MBB - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
Kok	11	5	3	-4	-6	-9	-15	-26

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	6	3	-4	-6	-11	-16	-24

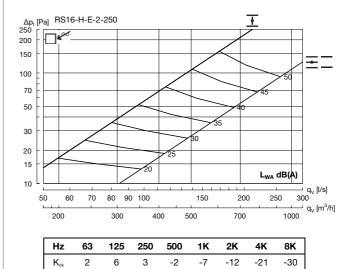


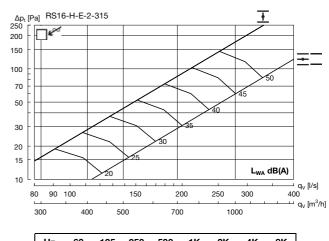
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	14	5	1	-3	-6	-9	-13	-21


RS16

Technische Daten

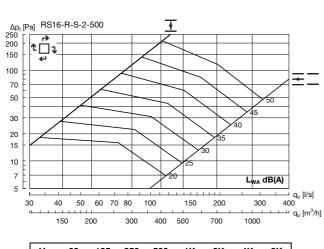
RS16 + H - Zuluft




Hz	63	125	250	500	1K	2K	4K	8K
Kok	5	5	2	-1	-6	-13	-19	-27

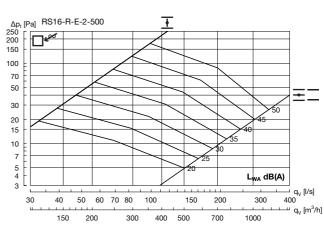
				500				
K _{ok}	8	5	1	-1	-5	-13	-21	-31

RS16 + H - Abluft



63 125 250 2K 4K 8K Hz 500 1K K. 8 5 2 -2 -5 -21 -32 -12

RS16


Technische Daten

RS16 + R - Zuluft

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	9	2	3	-1	-8	-12	-21	-28

RS16 + R - Abluft

ſ	Hz	63	125	250	500	1K	2K	4K	8K
ſ	Kok	8	0	0	-3	-5	-8	-18	-26

1

2

5

6

ŏ

12

13

14

15

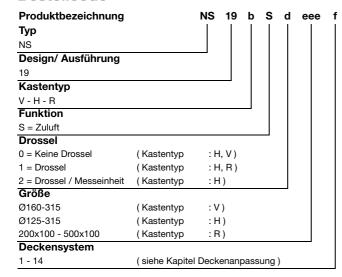
16

17

NS19

NS19 mit Anschlusskasten Typ V

Beschreibung

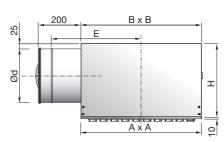

NS19 ist ein quadratischer Deckendurchlass für Zuluft mit einzeln einstellbaren Düsen für eine jederzeit veränderbare Luftführung. Der Durchlass ist für den Ausgleich großer Temperaturunterschiede geeignet und ermöglicht eine hohe Flexibilität bei der Luftführung. Es ist die horizontale Zufuhr von Kühlluft ebenso möglich wie die vertikale Zufuhr von Warmluft. Der Durchlass wird standardmäßig mit der Düseneinstellung "Drall" ausgeliefert.

- Einstellbare Luftzufuhr
- Gleiche Druckdifferenz bei unterschiedlicher Düseneinstellung
- Geeignet für horizontale oder vertikale Zuluft

Wartung

Zur Reinigung der internen Komponenten oder für den Zugang zum Kanal oder Anschlusskasten kann die Frontplatte entfernt werden. Die sichtbaren Teile des Durchlasses können mit einem feuchten Tuch abgewischt werden.

Bestellcode



Beispiel: NS-19-V-S-0-200-1

NS19 mit Anschlusskasten Typ H

Dimensionen

NS19-H		Α	В	Н	E	Gewicht
Ød	Muster	mm	mm	mm	mm	kg
125	300	*-	380	215	350	3.30
160	400	*-	380	250	350	4.60
200	500	*_	460	290	390	6.50
250	600	*_	560	340	420	9.30
315	600	*_	560	405	420	10.1

Die Abmessung A x A der Frontplatte hängt vom Deckensystem ab. Genauere Informationen zu den Abmessungen erhalten Sie unter "Deckenanpassung". Weitere Informationen zu Anschlusskästen erhalten Sie unter "Anschlusskasten".

Material und Ausführung

Anschlusskasten:

Material: Verzinkter Stahl

Frontplatte:

Material: Verzinkter Stahl
Dûsen ABS-Kunstoff weiß
Standardausführung: Pulverbeschichtet
Standardfarbe: RAL 9010 weiß

Der Durchlass ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

3

4

7

8

11

12

13

14

15

16

17

5

Bestellcode

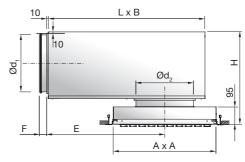
Produktbezeichnung	MBZ	aaa
Тур		
Größe		

Beispiel: MBZ-200

Schnellspannhänger **MHS**

Bestellcode

Produktbezeichnung	aaa
Тур	
	,


Beispiel: MHS

Anschlusskasten

MBB

NS19-V + MBB

NS19-V + MBB							
Rohr	NS19-V		В	Ε	F	Н*	L
Ød ₁ mm	$Ød_2$ mm	Muster	mm	mm	mm	mm	mm
100	160	300	260	216	50	255 - 295	310
125	160	300	310	262	50	280 - 320	376
125	200	400	310	262	50	280 - 320	376
160	160	300	380	323	50	314 - 354	459
160	200	400	380	323	50	314 - 354	459
160	250	500	380	323	50	314 - 354	459
200	200	400	460	396	70	355 - 395	565
200	250	500	460	396	70	355 - 395	565
200	315	600	460	396	70	355 - 395	565
250	250	500	540	486	70	405 - 445	698
250	315	600	540	486	70	405 - 445	698
315	315	600	540	646	70	470 - 510	858

* Bei Verwendung mit MBZ wird H länger bei:

 $Ød_2 = 160 - 200 \text{ mm} => H + 40 \text{ mm}$

 $Ød_2 = 250 - 315 \text{ mm} => H + 60 \text{ mm}$

Bestellcode

Produktbezeichnung	MBB	aaa	bbb	s
Тур				
MBB				
Rohranschluss Ød ₁	<u> </u>			
Ø100-315				
Durchlassgröße Ød ₂				
Ø160-315				
Funktion				
S = Zuluft				

Beispiel: NS-19-V-S-0-200-1+MBB-200-200-S

NS19

Technische Daten

Leistung

Die Diagramme zeigen den Gesamtdruckverlust Δp_t [Pa], Wurfweite I_{02} [m] sowie Schallleistungspegel L_{WA} [dB(A)] als Funktion des Volumenstromes q_v [l/s, m³/h].

Frequenzabhängiger Schallleistungspegel

Der Schallleistungspegel im Frequenzbereich wird durch $L_{WA} + K_{ok}$ definiert. Die Werte für K_{ok} werden in Tabellen unter den folgenden Diagrammen angegeben. K_{ok} -Werte für NS19 ohne Anschlusskasten sind auf Anfrage erhältlich.

NS19-V + MBB

NS19-V	NS19-V + MBB		: 50 Pa	Δp _t ≥	50 Pa
Rohr	NS19-V	30 (dB(A)	35 c	iB(A)
Ød ₁	$\emptyset d_2$	l/s	m³/h	I/s	m³/h
100	160	37	133	44	158
125	160	45	162	56	202
125	200	52	187	63	227
160	160	48	173	58	209
160	200	60	216	74	266
160	250	70	252	88	317
200	200	68	245	82	295
200	250	80	288	97	349
200	315	89	320	114	410
250	250	89	320	105	378
250	315	104	374	128	461
315	315	129	464	152	547

Zuluft

NS19 + H

NS19 + H			$\Delta p_t \ge 50 \text{ Pa}$		$\Delta p_t \ge 50 \text{ Pa}$	
Größe Ød	Minimum		30 dB(A)		35 dB(A)	
mm	l/s	m³/h	l/s	m³/h	l/s	m³/h
125	26	93	31	112	40	144
160	33	118	50	180	60	216
200	57	204	60	216	77	277
250	71	254	95	342	113	407
315	95	342	-	-	147	529

Eigendämpfung

Eigendämpfung der Durchlässe ΔL zwischen Rohr-/Kanalsystem und Raum, einschließlich Mündungsreflexion.

NS19-V + MBB

NS19-\	/ + MBB								
Rohr	NS19-V		Mittelfrequenz Hz						
Ød ₁	$\emptyset d_2$	63	125	250	500	1K	2K	4K	8K
100	160	18	16	5	17	20	19	18	21
125	160	17	13	8	20	18	18	18	21
125	200	13	11	5	16	17	16	17	19
160	160	17	16	11	23	21	20	21	21
160	200	13	14	8	22	21	19	20	21
160	250	14	14	5	19	17	17	18	20
200	200	13	10	7	17	20	17	19	18
200	250	12	9	6	16	18	17	19	17
200	315	12	8	3	14	17	15	17	17
250	250	14	9	7	18	19	19	19	19
250	315	14	7	5	16	17	18	18	18
315	315	8	9	8	16	18	17	18	24

NS19 + H

NS19 + H								
Größe Ød	Mittelfrequenz Hz							
mm	63	125	250	500	1K	2K	4K	8K
125	17	15	5	12	12	7	8	12
160	17	13	4	13	14	7	7	10
200	15	9	3	14	10	8	8	14
250	12	8	5	10	7	7	8	13
315	12	6	5	12	6	6	8	13

Einregulierung und Montage

Für weitere Information siehe www.lindab.de und Montageund Einregulierungsanweisung. \sim

0

6

8

4 0

11

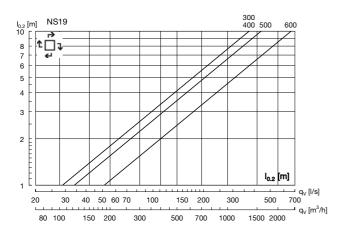
12

13

14

15

16


17

NS19

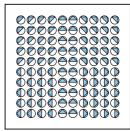
Technische Daten

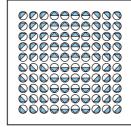
Wurfweite I_{0,2}

Die Wurfweite $I_{0,2}$ [m] wird bei einer Endgeschwindigkeit von 0,2 m/s (90-%-Fraktil) angegeben. Die Benennung der Linien im Diagram spezifizieren der Muster der Frontplatte.

Korrektur der Wurfweite

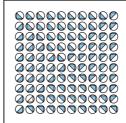
4-Seitig	3-Seitig	2-Seitig	1-Seitig
1,3	2	2,5	4,6

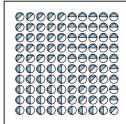

Luftführung



4-seitig

3-seitig

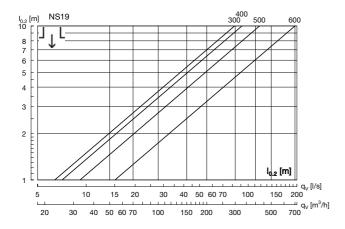

2-seitig

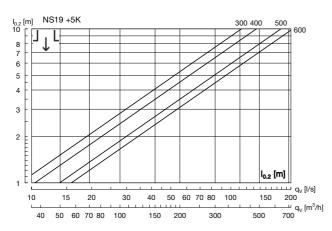

1-seitig

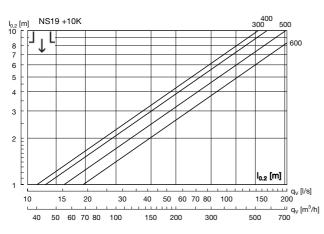
0000000000
00000000000

Drall (Rotation)

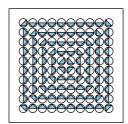
2-seitig über Eck

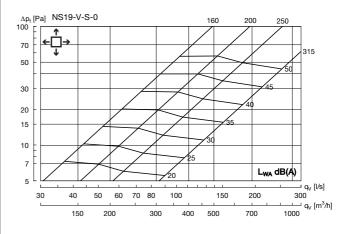



NS19

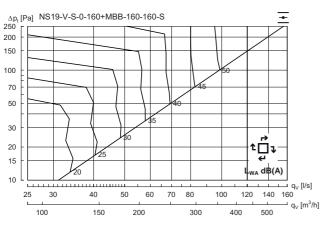

Technische Daten

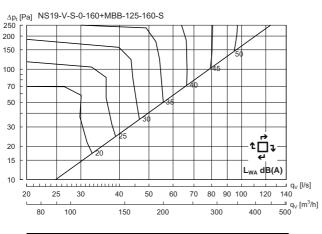
Wurfweiten/Wendepunkte


Die Wurfweite $I_{0,2}$ [m] ist aus dem Diagramm ersichtlich. Die Wurfweite gilt für isotherme Zuluft bei einer Endgeschwindigkeit von 0,2 m/s. Der Wendepunkt $I_{0,0}$ (m) für erwärmte Zuluft ist aus dem Diagramm ersichtlich, +5 K bzw. +10 K. Die Benennung der Linien im Diagram spezifizieren der Muster der Frontplatte.

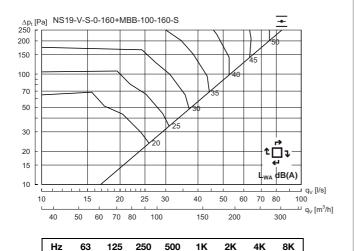


Düseneinstellung – vertikal


NS19-V ohne Anschlusskasten - Zuluft

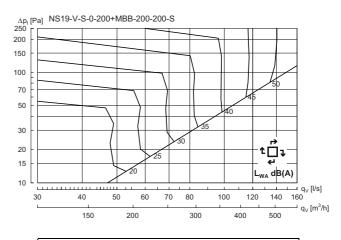

NS19

Technische Daten

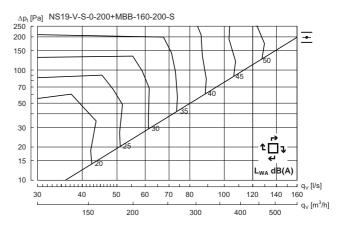

NS19-V 160 + MBB - Zuluft

Hz			250	500	1K	2K	4K	8K
Kok	10	4	-2	1	-6	-15	-22	-33

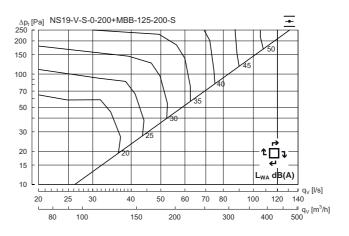
					2K		
K _{ok} 8	5	-1	0	-6	-13	-18	-28


-8

-12


-16

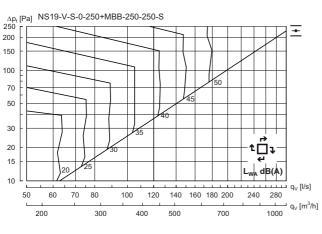
-22


NS19-V 200 + MBB - Zuluft

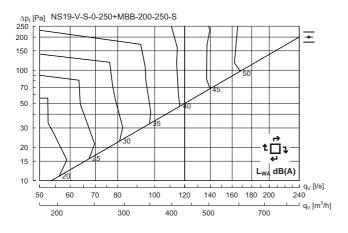
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	4	-3	0	-5	-16	-23	-33

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	12	5	-1	-1	-5	-13	-19	-26

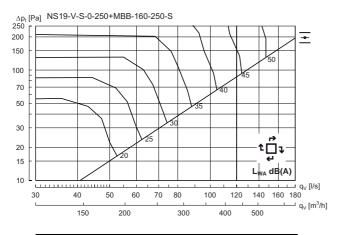
				500				
K _{ok}	8	6	2	-1	-7	-13	-18	-26


11

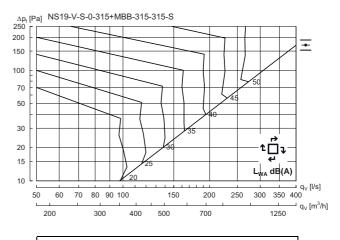
4


NS19

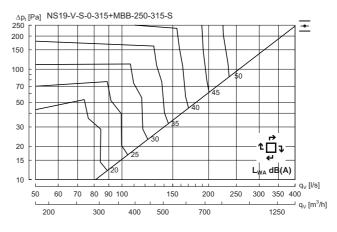
Technische Daten


NS19-V 250 + MBB - Zuluft

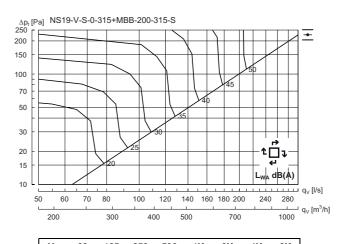
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	8	4	-4	0	-5	-16	-24	-37



Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	9	6	-2	0	-5	-15	-22	-33



Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	13	6	0	-1	-5	-12	-18	-26


NS19-V 315 + MBB - Zuluft

Hz								8K
K _{ok}	10	1	-2	0	-5	-16	-23	-34

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	10	3	-2	0	-5	-15	-21	-28

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	9	6	-1	-1	-5	-13	-20	-28

2

3

6

7

9

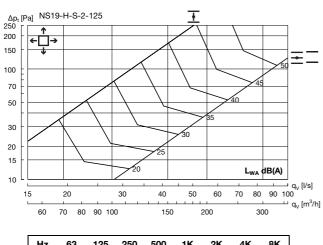
10

10

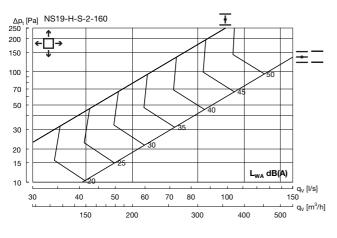
4 O

14

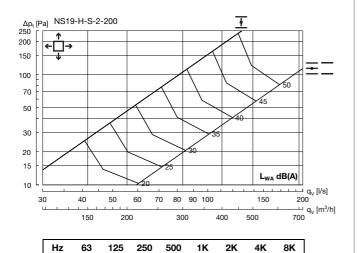
15

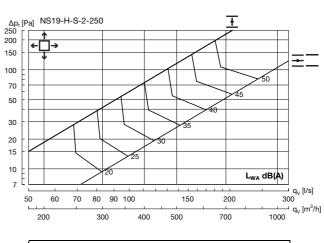

16

47


NS19

Technische Daten


NS19 + H - Zuluft


Hz	63	125	250	500	1K	2K	4K	8K
Kok	9	7	6	-4	-9	-15	-21	-28

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	9	7	6	-4	-9	-15	-21	-28

NS19 + H - Zuluft

Hz	63	125	250	500	1K	2K	4K	8K
Kok	6	7	3	-1	-7	-16	-22	-31

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	6	7	3	-1	-8	-17	-25	-36

11

6

3

-1

-16

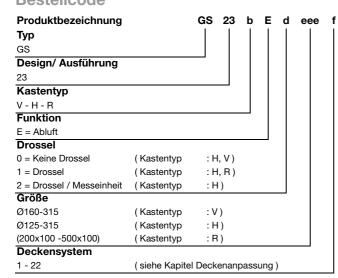
-22

-30

GS23

GS23 mit Anschlusskasten Typ V

Beschreibung

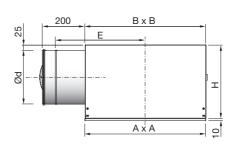

GS23 ist ein quadratischer Durchlass mit Aluminiumgitter. GS23 wird für Abluft verwendet.

• Hohe Leistung

Wartung

Zur Reinigung der internen Komponenten oder für den Zugang zum Kanal oder Anschlusskasten kann die Frontplatte entfernt werden. Die sichtbaren Teile des Durchlasses können mit einem feuchten Tuch abgewischt werden.

Bestellcode



Beispiel: GS-23-V-E-0-200-1

GS23 mit Anschlusskasten Typ H

Dimensionen

GS23-H		Α	В	Н	E	Gewicht
Ød	Muster	mm	mm	mm	mm	kg
125	300	*-	380	215	350	5.9
160	400	*_	380	250	350	5.9
200	500	*_	460	290	390	8.5
250	600	*_	560	340	420	12.3
315	600	*_	560	405	420	13.1

Die Abmessung A x A der Frontplatte hängt vom Deckensystem ab. Genauere Informationen zu den Abmessungen erhalten Sie unter "Deckenanpassung". Weitere Informationen zu Anschlusskästen erhalten Sie unter "Anschlusskasten".

Material und Ausführung

A	h			
Ansc	mu	SSK	สรเ	en:

Material: Verzinkter Stahl

Frontplatte:

Material: Verzinkter Stahl
Gitter: Aluminium
Standardausführung: Pulverbeschichtet
Standardfarbe: RAL 9010 weiß

Der Durchlass ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

2

4

7

8

11

12

13

14

15

17

16

GS23

1

2

3

5

7

9

11

1 2

14

10

17

18

Zubehör

Verlängerungsstutzen

Bestellcode

Produktbezeichnung	MBZ	aaa
Тур		
Größe		

Beispiel: MBZ-200

Montageschienen

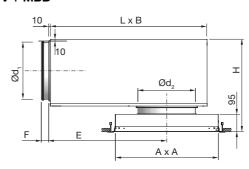
MBZ

Schnellspannhänger

MHS

Bestellcode

Produktbezeichnung	aaa
Тур	
	•


Beispiel: MHS

Anschlusskasten

GS23-V + MBB

GS23-V	+ MBB						
Rohr	GS23-V		В	E	F	Н*	L
Ød ₁ mm	$Ød_2 mm$	Muster	mm	mm	mm	mm	mm
100	160	300	260	216	50	255 - 295	310
125	160	300	310	262	50	280 - 320	376
125	200	400	310	262	50	280 - 320	366
160	160	300	380	323	50	314 - 354	459
160	200	400	380	323	50	314 - 354	459
160	250	500	380	323	50	314 - 354	459
200	200	400	460	396	70	355 - 395	565
200	250	500	460	396	70	355 - 395	565
200	315	600	460	396	70	355 - 395	565
250	250	500	540	486	70	405 - 445	698
250	315	600	540	486	70	405 - 445	698
315	315	600	540	646	70	470 - 510	858

* Bei Verwendung mit MBZ wird H länger bei:

 \emptyset d₂ = 160 - 200 mm => H + 40 mm \emptyset d₂ = 250 - 315 mm => H + 60 mm

Bestellcode

Produktbezeichnung	MBB	aaa	bbb	Е
Тур				
MBB				
Rohranschluss Ød ₁				
Ø100-315				
Durchlassgröße Ød ₂				
Ø160-315				
Funktion				
E = Abluft				

Beispiel: GS-23-V-E-0-200-1+MBB-200-200-E

GS23

Technische Daten

Leistung

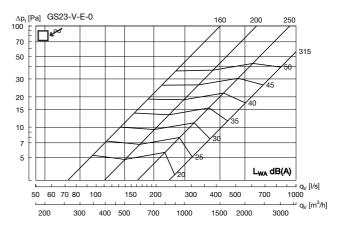
Die Diagramme zeigen den Gesamtdruckverlust Δp_t [Pa], Wurfweite I_{02} [m] sowie Schallleistungspegel I_{WA} [dB(A)] als Funktion des Volumenstromes I_{V} [l/s, m³/h].

Eigendämpfung

Eigendämpfung der Durchlässe ΔL zwischen Rohr-/Kanalsystem und Raum, einschließlich Mündungsreflexion.

GS23 + H

GS23 + H										
Größe Ød		Mittelfrequenz Hz								
mm	63	125	250	500	1K	2K	4K	8K		
125	17	16	5	9	10	4	5	5		
160	16	14	3	11	11	4	4	4		
200	15	9	2	11	7	4	4	6		
250	14	8	3	9	4	3	4	6		
315	12	6	4	10	3	3	4	6		

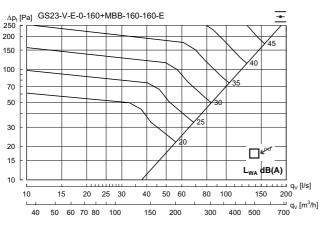

GS23-V + MBB

GS23-\	/ + MBB									
Rohr	GS23-V			Mitt	elfrec	requenz Hz				
$Ød_1$	$\emptyset d_2$	63	125	250	500	1K	2K	4K	8K	
100	160	20	16	5	19	20	19	18	21	
125	160	16	13	9	20	18	18	19	20	
125	200	14	12	6	17	16	16	18	19	
160	160	17	16	10	24	20	20	21	21	
160	200	15	15	7	22	21	19	20	21	
160	250	15	14	5	20	16	16	17	19	
200	200	14	11	7	18	21	17	20	18	
200	250	13	9	5	17	18	16	18	17	
200	315	13	8	3	15	17	15	17	16	
250	250	15	8	7	18	18	18	18	19	
250	315	15	7	6	16	16	17	17	18	
315	315	8	11	8	16	18	17	17	22	

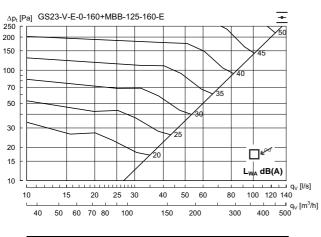
Einregulierung und Montage

Für weitere Information siehe www.lindab.de und Montageund Einregulierungsanweisung.

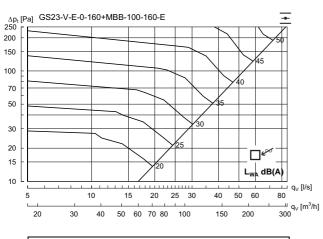
GS23-V ohne Anschlusskasten - Abluft



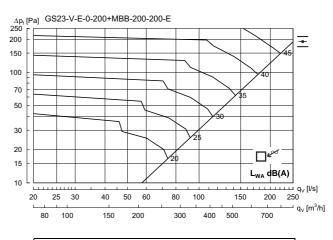
5


GS23

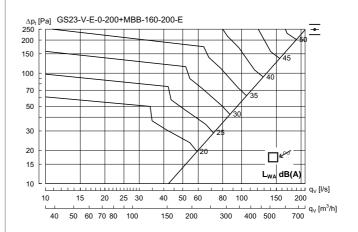
Technische Daten


GS23-V 160 + MBB - Abluft

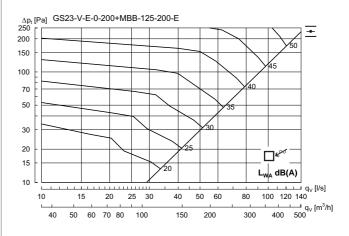
Hz	63	125	250	500	1K	2K	4K	8K
Kok	15	5	0	-3	-6	-9	-14	-19



Hz	63	125	250	500	1K	2K	4K	8K
K_{ok}	11	5	1	-2	-6	-11	-15	-22

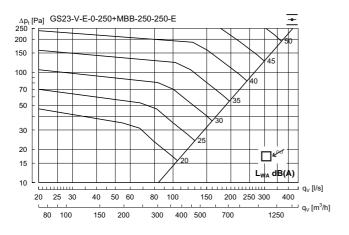


Hz	63	125	250	500	1K	2K	4K	8K
Kok	8	4	4	-2	-8	-12	-16	-23

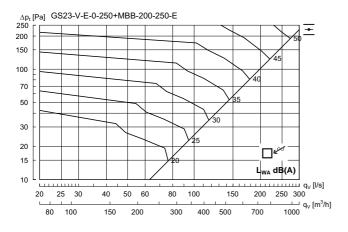

GS23-V 200 + MBB - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
Kok	14	5	1	-3	-6	-9	-13	-21

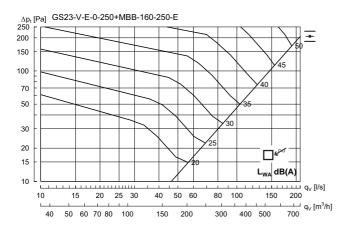
Hz								
K _{ok}	14	5	0	-3	-6	-9	-14	-21



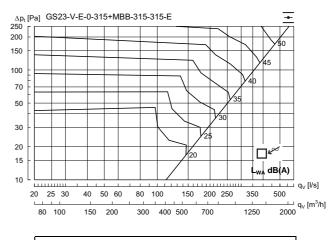
Hz								
Kok	9	4	1	-1	-6	-11	-15	-22


GS23

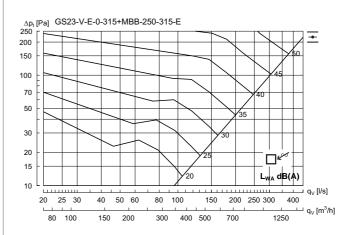
Technische Daten


GS23-V 250 + MBB - Abluft

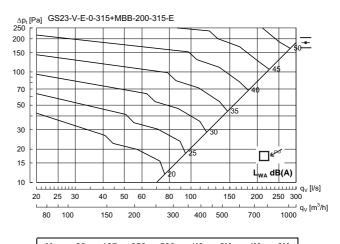
			125				2K	4K	8K
ı	≺ ok	10	5	2	-3	-6	-9	-15	-23



L	Hz		125	250	500	1K	2K	4K	8K
	K_{ok}	13	5	1	-3	-6	-10	-14	-22



				500				
K _{ok}	13	5	1	-3	-6	-9	-14	-22


GS23-V 315 + MBB - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
Kok	11	5	3	-4	-7	-9	-14	-25

Hz	63	125	250	500	1K	2K	4K	8K
K_{ok}	11	5	2	-3	-6	-10	-15	-24

Hz	63	125	250	500	1K	2K	4K	8K
K_{ok}	13	5	1	-3	-6	-9	-14	-22

Änderungen vorbehalten

(C) Lindab

1

2

3

5

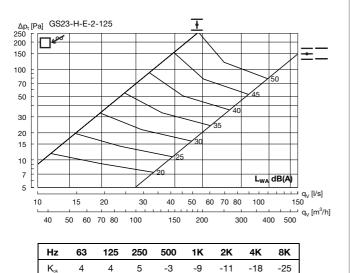
6

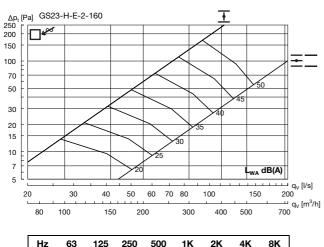
8

4.0

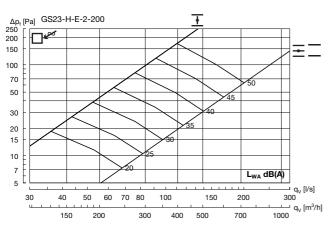
11

15

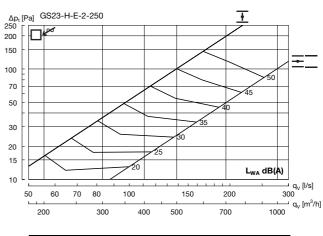

16


17

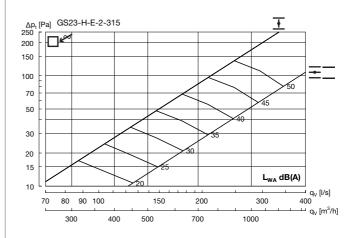
18


Technische Daten

Abluft mit Anschlusskasten Typ H



Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	6	4	6	-3	-10	-13	-20	-29



Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	8	5	4	-2	-8	-11	-19	-24

Abluft mit Anschlusskasten Typ H

Hz	63	125	250	500	1K	2K	4K	8K
Kok	3	6	2	-2	-6	-12	-21	-32

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	10	6	2	-3	-5	-11	-20	-31